Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PH aluminium

In this system there is a useful cooperative effect between aliuninium, fluoride and calcium, which has been demonstrated by the solution studies of Ellis Wilson (1987). In the absence of aluminium, calcium precipitates as the fluoride at all pHs. Aluminium has the effect of preventing the precipitation of calcium as fluoride, again because it forms strong soluble complexes with fluoride. [Pg.136]

Does preconditioning improve intra- and inter-laboratory reproducibility (with respect to indicative parameters such as pH, aluminium, calcium, potassium, etc.) ... [Pg.160]

During preconditioning. pH, aluminium concentration and, optionally, conductivity were determined after each 24- or 72-hour contact period during wet preconditioning. Only CO2 pressure was controlled and adjusted during dry preconditioning. [Pg.164]

During migrations (3 x 72 hours). pH, aluminium concentration and, conductivity were determined after the first and second migration periods. At the end of the third 72-hour period, test waters were sampled for analysis of the following parameters ... [Pg.164]

First examination of experimental results has shown that some parameters are good indieators of the behaviour of the materials in eontaet with water for the purpose of the research pH, aluminium, calcium and potassium. The evolution of these elements is strongly influenced by the material and by test eonditions (preconditioning and test water). Lead and chromium have never been deteeted at significant levels in any of the experiments carried out for the three materials. [Pg.165]

We can also observe that the material was less reactive than OPC lower pH, aluminium and potassium concentrations, no significant change of calcium concentration in medium mineralized migration water (initial Ca = 80 mg/1). [Pg.167]

The pH of soils is a key factor determining whether certain species of plants will grow. Aluminium ions are present in soil in a number of forms. At high pH aluminium forms an insoluble hydroxide, Al(OH)3. As the pH falls due to acid deposition, the aluminium ions are released into solution. For example, if the acid deposition, contains sulfuric acid, aluminium is released into nearby lakes and streams as soluble aluminium sulfate ... [Pg.276]

Prepared by the dehydration of benzamide. Hydrolysed by dilute acids and alkalis to benzoic acid. Good solvent. benzopheDone,C]3HioO,PhC(0)Ph. Colourless rhombic prisms, m.p. 49 C, b.p. 306°C. Characteristic smell. It is prepared by the action of benzoyl chloride upon benzene in the presence of aluminium chloride (Friedel-Crafts reaction) or by the oxidation of di-phenylmethane. It is much used in perfumery. Forms a kelyl with sodium. [Pg.57]

Figure C2.12.8. Schematics of tlie dealumination of zeolites. Water adsorbed on a Br( msted site hydrolyses tire Al-O bond and fonns tire first silanol group. The remaining Al-0 bonds are successively hydrolysed leaving a silanol nest and extra-framework aluminium. Aluminium is cationic at low pH. Figure C2.12.8. Schematics of tlie dealumination of zeolites. Water adsorbed on a Br( msted site hydrolyses tire Al-O bond and fonns tire first silanol group. The remaining Al-0 bonds are successively hydrolysed leaving a silanol nest and extra-framework aluminium. Aluminium is cationic at low pH.
The data in Tables 4.2 and 4.3 refer to ions in aqueous acid solution for cations, this means effectively [MlHjO), ]" species. However, we have already seen that the hydrated cations of elements such as aluminium or iron undergo hydrolysis when the pH is increased (p. 46). We may then assume (correctly), that the redox potential of the system... [Pg.101]

The (ZZ-ephedrine was resolved into its components by the use of d-and Z-mandelic acids. In 1921 Neuberg and Hirsch showed that benz-aldehyde was reduced by yeast, fermenting in suerose or glueose solution to benzyl aleohol and a phenylpropanolone, which proved to be Z-Ph. CHOH. CO. CH3. This ean be simultaneously, or consecutively, eondensed with methylamine and then eonverted to Z-ephedrine by reduction, e.g., with aluminium amalgam in moist ether, or by hydrogen in presenee of platinic oxide as catalyst (Knoll, Hildebrant and Klavehn ). [Pg.641]

Low, G.C., 1975. Agglomeration effects in aluminium trihydroxide precipitation. Ph.D. Dissertation, University of Queensland, Australia. [Pg.314]

M = Al, Ga, In, Tl). The solution chemistry of Al in particular has been extensively investigated because of its industrial importance in water treatment plants, its use in many toiletry formulations, its possible implication in both Altzheimer s disease and the deleterious effects of acid rain, and the ubiquity of Al cooking utensils.For example, hydrated aluminium sulphate (10-30 gm ) can be added to turbid water supplies at pH 6.5-7.5 to flocculate the colloids, some 3 million tonnes per annum being used worldwide for this application alone. Likewise kilotonne amounts of A1(OH)2.5C1o.5 in concentrated (6m) aqueous solution are used in the manufacture of deodorants and antiperspirants. [Pg.245]

The usual extraction procedure is to roast the crushed ore, or vanadium residue, with NaCl or Na2C03 at 850°C. This produces sodium vanadate, NaV03, which is leached out with water. Acidification with sulfuric acid to pH 2-3 precipitates red cake , a polyvanadate which, on fusing at 700°C, gives a black, technical grade vanadium pentoxide. Reduction is then necessary to obtain the metal, but, since about 80% of vanadium produced is used as an additive to steel, it is usual to effect the reduction in an electric furnace in the presence of iron or iron ore to produce ferrovanadium, which can then be used without further refinement. Carbon was formerly used as the reductant, but it is difficult to avoid the formation of an intractable carbide, and so it has been superseded by aluminium or, more commonly, ferrosilicon (p. 330) in which case lime is also added to remove the silica as a slag of calcium silicate. If pure vanadium metal is required it can... [Pg.977]

Singer and co-workers have investigated the acylation reactions of ferrocene in ionic liquids made from mixtures of [EMIMJI and aluminium(III) chloride (Scheme 6.1-5) [9, 10]. The ionic liquid acts both as solvent and as source of the Friedel-Crafts catalyst. In mildly acidic (X(A1C13) > 0.5 [EMIM]I/A1C13, the monoacetylated ferrocene was obtained as the major product. In strongly acidic [EMIM]I/AlCl3 X(A1C13) = 0.67 the diacylated ferrocene was the major product. Also, when R = alkyl, the diacetylated product was usually the major product, but for R = Ph, the monoacetylated product was favored. [Pg.291]

The data given in Tables 1.9 and 1.10 have been based on the assumption that metal cations are the sole species formed, but at higher pH values oxides, hydrated oxides or hydroxides may be formed, and the relevant half reactions will be of the form shown in equations 2(a) and 2(b) (Table 1.7). In these circumstances the a + will be governed by the solubility product of the solid compound and the pH of the solution. At higher pH values the solid compound may become unstable with respect to metal anions (equations 3(a) and 3(b), Table 1.7), and metals like aluminium, zinc, tin and lead, which form amphoteric oxides, corrode in alkaline solutions. It is evident, therefore, that the equilibrium between a metal and an aqueous solution is far more complex than that illustrated in Tables 1.9 and 1.10. Nevertheless, as will be discussed subsequently, a similar thermodynamic approach is possible. [Pg.64]

The Al-HjO diagram does show, however, the danger that may arise due to an increase in pH when the metal is cathodically protected in near-neutral solutions indeed, the possibility of alkaline corrosion has seriously limited the use of cathodic protection for aluminium structures. [Pg.72]

The form of Figure 1.43 is common among many metals in solutions of acidic to neutral pH of non-complexing anions. Some metals such as aluminium and zinc, whose oxides are amphoteric, lose their passivity in alkaline solutions, a feature reflected in the potential/pH diagram. This is likely to arise from the rapid rate at which the oxide is attacked by the solution, rather than from direct attack on the metal, although at low potential, active dissolution is predicted thermodynamically The reader is referred to the classical work of Pourbaix for a full treatment of potential/pH diagrams of pure metals in equilibrium with water. [Pg.135]

The development of acidity within an occluded cell is by no means a new concept, and it was used by Hoar s as early as 1947 in his Acid Theory of Pitting to explain the pitting of passive metals in solutions containing Cl ions. According to Hoar the Cl ions migrate to the anodic sites and the metal ions at these sites hydrolyse with the formation of HCl, a strong acid that inhibits the formation of a protective film of oxide or hydroxide. Edeleanu and Evans followed the pH changes when aluminium was made anodic in Cl solutions and found that the pH decreased from 8-8 to 5-3. [Pg.162]

The electrochemical effects of slowly and erratically thickening oxide films on iron cathodes are, of course, eliminated when the film is destroyed by reductive dissolution and the iron is maintained in the film-free condition. Such conditions are obtained when iron is coupled to uncontrolled magnesium anodes in high-conductivity electrolytes and when iron is coupled to aluminium in high-conductivity solutions of pH less than 4-0 or more than 12 0 . In these cases, the primary cathodic reaction (after reduction of the oxide film) is the evolution of hydrogen. [Pg.226]

Common packaging materials are a potential source of aggressive substance s, and careful selection is recommended to avoid surface deterioration. Where paper is in contact with aluminium, the chloride content should be below 0-05 7o, sulphate content below 0-25 7o, copper content below 0-01% and the pH of aqueous extracts in the range pH 5-5-7-5, in order to avoid corrosion in damp conditions. Papers and felts used in building applications should also conform to this specification as a minimum requirement and be of the highest quality, since metallic copper found in materials of inferior origin can result in severe local galvanic attack of aluminium. [Pg.675]


See other pages where PH aluminium is mentioned: [Pg.1182]    [Pg.145]    [Pg.64]    [Pg.1215]    [Pg.1182]    [Pg.145]    [Pg.64]    [Pg.1215]    [Pg.24]    [Pg.2784]    [Pg.2786]    [Pg.105]    [Pg.55]    [Pg.526]    [Pg.631]    [Pg.637]    [Pg.70]    [Pg.72]    [Pg.72]    [Pg.73]    [Pg.96]    [Pg.135]    [Pg.204]    [Pg.212]    [Pg.232]    [Pg.286]    [Pg.358]    [Pg.419]    [Pg.460]    [Pg.659]    [Pg.660]    [Pg.660]    [Pg.671]    [Pg.671]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Passivity of Aluminium and pH Values

© 2024 chempedia.info