Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perylene fluorescence

Schott H, Von Cunow D, Langhals H (1992) Labeling of liposomes with intercalating perylene fluorescent dyes. Biochim Biophys Acta 1110 151-157... [Pg.104]

The effect of exciplex dissociation (process MC) on the over-all kinetics of molecular fluorescence decay has been examined by Ware and Richter34 for the system perylene-dimethylaniline in solvents with dielectric constants (e) varying from 2.3 to 37. In low dielectric media (e = 2.3-4) the perylene fluorescence response may be fitted to a two-component exponential curve and exciplex emission is also observed, whereas in more polar solvents (e > 12) exciplex fluorescence is absent (at ambient temperatures) and the molecular fluorescence decays exponentially. These observations are consistent with both an increase in exciplex stability toward molecular dissociation with solvent polarity (Eq. 13) and the increased probability of dissociation into solvated ions... [Pg.181]

Depth-distribution of fluorescent dopants in cast polymer film (4) Fluorescence spectra of poly(N-vinylcarbazole) (PVCz) film doped with perylene are shown in Fig. 6. They consist of two broad structureless excimer bands of the polymer with a shoulder at 375 nm and a peak at 420 nra, and perylene band with a vibrational structure above 450 nm. It is worth noting that the perylene fluorescence intensity under the TIR condition is relatively weaker than that under the normal one. Since the boundary surface is selectively excited under the former condition, the structure near the surface should be different from the bulk. It is well known that the excitation energy migrates over carbazolyl chromophores and is trapped in the doped perylene efficiently. Therefore, the present result means that energy migration efficiency in the host polymer and/or the dopant concentration are a function of the depth from the interface. [Pg.21]

Figure 16 shows a SNOM image for PiBMA thin films, containing the labeled PiBMA-Pe polymers with a fraction F = 0.14%, taken with perylene fluorescence intensity under the excitation at 442 nm by a He-Cd laser [26,60]. Several small spots are observed in the picture, although the smface was very flat over the whole area of the topographic images taken at the same time. [Pg.151]

Decomposition of diphenoylperoxide [6109-04-2] (40) in the presence of a fluorescer such as perylene in methylene chloride at 24°C produces chemiluminescence matching the fluorescence spectmm of the fluorescer with perylene was reported to be 10 5% (135). The reaction follows pseudo-first-order kinetics with the observed rate constant increasing with fluorescer concentration according to = k [flr]. Thus the fluorescer acts as a catalyst for peroxide decomposition, with catalytic decomposition competing with spontaneous thermal decomposition. An electron-transfer mechanism has been proposed (135). [Pg.269]

Benzo[ghi]perylene (1,12-benzoperylene) [191-24-2] M 276,3, m 273°, 277-278.5°, 278-280°, Purified as light green crystals by recrystn from CfiH6 or xylene and sublimes at 320-340° and 0.05mm [UV Helv Chim Acta 42 2315 7959 Chem Ber 65 846 1932 Fluoresc. Spectrum J Chem Soc 3875 7954]. 1,3,5-Trinitrobenzene complex m 310-313° (deep red crystals from C6Hg) picrate m 267-270° (dark red crystals from CgH6) styphnate (2,4,6-trinitroresorcinol complex) m 234° (wine red crystals from CgH6). It recrystallises from propan-l-ol [J Chem Soc 466 7959]. [Pg.123]

Fluorescent small molecules are used as dopants in either electron- or hole-transporting binders. These emitters are selected for their high photoluminescent quantum efficiency and for the color of their emission. Typical examples include perylene and its derivatives 44], quinacridones [45, penlaphenylcyclopenlcne [46], dicyanomethylene pyrans [47, 48], and rubrene [3(3, 49]. The emissive dopant is chosen to have a lower excited state energy than the host, such that if an exciton forms on a host molecule it will spontaneously transfer to the dopant. Relatively small concentrations of dopant are used, typically in the order of 1%, in order to avoid concentration quenching of their luminescence. [Pg.535]

FIGURE 15.28 Chemiluminescence, the emission of light as the result of a chemical reaction, occurs when hydrogen peroxide is added to a solution of the organic compound perylene. Although hydrogen peroxide itself can fluoresce, in this case the light is emitted by the perylene. [Pg.767]

Reagents. Perylene was obtained from Sigma Chemical Company (St. Louis, Missouri). All other PAHs were supplied by Aldrich Chemical Company (Milwaukee, Wisconsin) and were reported to contain less that 3% impurities. All PAHs were used without further purification. Isopropyl ether (99%) for extraction work was also purchased from Aldrich. Hydroquinone, a fluorescent stabilizer present in the ether, was removed prior to solution preparation by rotary evaporation. Fluorometric-grade 1-butanol was supplied by Fisher Scientific Company (Fair Lawn, New Jersey). All solutions for extractions of PAHs were prepared by evaporating portions of a stock cyclohexane solution and diluting to the appropriate volume with isopropyl ether. Fluorescence measurements were performed on 1 10 dilutions of the stock and final organic phase solutions. The effect of dissolved CDx on the fluorescence intensity of the organic phase PAH was minimized by dilution with isopropyl ether. [Pg.171]

Figure 8.2 Optical transmission images of pe lene (a), anthracene (b), and pyrene (c) microc stalsirradiated bythe NIRIaser scale bar 5 Xm. (d) Emission spectra offluorescence spots in the microcrystals of anthracene (dotted line), pyrene (broken line), and perylene (smooth line), (e) The dependence of the fluorescence... Figure 8.2 Optical transmission images of pe lene (a), anthracene (b), and pyrene (c) microc stalsirradiated bythe NIRIaser scale bar 5 Xm. (d) Emission spectra offluorescence spots in the microcrystals of anthracene (dotted line), pyrene (broken line), and perylene (smooth line), (e) The dependence of the fluorescence...
Emission spectra at these points are shown in Figure 8.2d. The band shapes were independent of the excitation intensity from 0.1 to 2.0 nJ pulse . The spectrum of the anthracene crystal with vibronic structures is ascribed to the fluorescence originating from the free exdton in the crystalline phase [1, 2], while the broad emission spectra of the pyrene microcrystal centered at 470 nm and that of the perylene microcrystal centered at 605 nm are, respectively, ascribed to the self-trapped exciton in the crystalline phase of pyrene and that of the a-type perylene crystal. These spectra clearly show that the femtosecond NIR pulse can produce excited singlet states in these microcrystals. [Pg.136]

Figure 8.2e shows the dependence of the fluorescence intensity on the excitation power of the NIR light for the microcrystals measured with a 20x objective. In this plot, both axes are given in logarithmic scales. The slope of the dependence for the perylene crystal is 2.8, indicating that three-photon absorption is responsible for the florescence. On the other hand, slopes for the perylene and anthracene crystals are 3.9 for anthracene and 4.3 for pyrene, respectively. In these cases, four-photon absorption resulted in the formation of emissive excited states in the crystals. These orders of the multiphoton absorption are consistent with the absorption-band edges for each crystal. The four-photon absorption cross section for the anthracene crystal was estimated to be 4.0 x 10 cm s photons by comparing the four-photon induced fluorescence intensity of the crystal with the two-photon induced fluorescence intensity of the reference system (see ref. [3] for more detailed information). [Pg.136]

Figure 8.3 Interferometric autocorrelation traces of the fluorescence intensities of perylene (a) and anthracene (b) microcrystals irradiated by two NIR Cr F laser pulses centered at 1.26 Xm with the same intensity. Figure 8.3 Interferometric autocorrelation traces of the fluorescence intensities of perylene (a) and anthracene (b) microcrystals irradiated by two NIR Cr F laser pulses centered at 1.26 Xm with the same intensity.
Figure 8.4 (a) Scanning three-photon fluorescence image of pe lene microcrystals obtained by irradiation of the NIR pulse of 1260 nm with power 70 pj pulse scanning step 100nm. (b) Corresponding optical transmission image of the perylene crystals. [Pg.138]

The first observations of P-type delayed fluorescence arose from the photoluminescence of organic vapors.<15) It was reported that phenanthrene, anthracene, perylene, and pyrene vapors all exhibited two-component emission spectra. One of these was found to have a short lifetime characteristic of prompt fluorescence while the other was much longer lived. For phenanthrene it was observed that the ratio of the intensity of the longer lived emission to that of the total emission increased with increasing phenanthrene vapor... [Pg.112]

Kool and co-workers recently reported a multicolor set of water-soluble dyes synthesized through the combination of three to five individual fluorophores assembled on a DNA-like backbone [94, 95]. As a continuation of their previous works on various DNA analogs [96-99], they synthesized the oligodeoxyfluoro-side (ODF) with seven fluorescent monomers, such as pyrene, perylene, dimethy-laminostilbene, and three stilbene derivatives, and they assembled these fluorescent DNA monomers into oligofluor chains using a DNA synthesizer (Fig. 26). Using... [Pg.178]

Similar results were obtained with the diperoxides 5 (R phenyl) and 5 a (R />-chlorophenyl) and dibenzanthrone or other fluorescers (perylene, rhodamine B, 9.10-diphenylanthracene, anthracene, fluorescein), with quantum yields of the respective chemiluminescence in the range 3.29 X 10 8.... 5.26 X 10 6. [Pg.82]


See other pages where Perylene fluorescence is mentioned: [Pg.137]    [Pg.406]    [Pg.252]    [Pg.12]    [Pg.3600]    [Pg.23]    [Pg.21]    [Pg.72]    [Pg.260]    [Pg.168]    [Pg.616]    [Pg.312]    [Pg.23]    [Pg.137]    [Pg.406]    [Pg.252]    [Pg.12]    [Pg.3600]    [Pg.23]    [Pg.21]    [Pg.72]    [Pg.260]    [Pg.168]    [Pg.616]    [Pg.312]    [Pg.23]    [Pg.2493]    [Pg.269]    [Pg.274]    [Pg.700]    [Pg.173]    [Pg.58]    [Pg.63]    [Pg.66]    [Pg.137]    [Pg.78]    [Pg.82]    [Pg.172]    [Pg.177]    [Pg.425]    [Pg.84]    [Pg.160]    [Pg.427]    [Pg.9]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Fluorescent materials perylenes

Fluorescers perylene

Fluorescers perylene

Perylen

Perylene, metal-enhanced fluorescence

Perylene. fluorescence quenching

Perylenes

© 2024 chempedia.info