Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pervaporation solvent separation

Groot et al [3.86] investigated the technical feasibility of five reactive separation technologies (fermentation coupled to stripping, adsorption, liquid-liquid extraction, pervaporation, and membrane solvent extraction). They concluded that liquid-liquid extraction and pervaporation reactive separation processes show the greatest potential, with PVMBR systems particularly attractive due to their operational simplicity. Membranes utilized include silicone [3.76, 3.77, 3.74, 3.87, 3.75, 3.85, 3.88], supported liquid membrane systems [3.87, 3.89], polypropylene [3.70], and silicalite filled PDMS membranes [3.90, 3.91]. The results with PVMBR systems have been very promising. [Pg.121]

These various methods have been discussed in chapter III. Since reverse osmosis membranes may be considered as intermediate between porous ultrafiltration membranes and very dense nonporous pervaporation/gas separation membranes, it is not necessary that their structure to be as dense as for pervaporation/gas separatipn. Most composite reverse osmosis and nanofiltration membranes are prepared by interfacial polymerisation (see chapter in. 6) in which two very reactive bifunctional monomers (e.g. a di-acid chloride and a di-amine) or triiunctional monomers (e.g. trimesoyicbloride) are allowed to react with each other at a water/organic solvent interface and a typical rietwork structure is obtained. Another example of monomers used for interfacial polymerisation are given in table VI.6 (see also table m.1). [Pg.301]

Pervaporation is a relatively new process with elements in common with reverse osmosis and gas separation. In pervaporation, a liquid mixture contacts one side of a membrane, and the permeate is removed as a vapor from the other. Currendy, the only industrial application of pervaporation is the dehydration of organic solvents, in particular, the dehydration of 90—95% ethanol solutions, a difficult separation problem because an ethanol—water azeotrope forms at 95% ethanol. However, pervaporation processes are also being developed for the removal of dissolved organics from water and the separation of organic solvent mixtures. These applications are likely to become commercial after the year 2000. [Pg.76]

Pervaporation has been commercialized for two appHcations. The first and most developed is the separation of water from concentrated alcohol solutions. GFT of Neunkirchen, Germany, the leader in this field, installed their first important plant in 1982. More than 100 plants have been installed by GFT for this appHcation (90). The second appHcation is the separation of small amounts of organic solvents from contaminated water (91). In both of these apphcations, organics are separated from water. This separation is relatively easy, because organic compounds and water, due to their difference in polarity, exhibit distinct membrane permeation properties. The separation is also amenable to membrane pervaporation because the feed solutions are relatively nonaggressive and do not chemically degrade the membrane. [Pg.87]

When ionic liquids are used as replacements for organic solvents in processes with nonvolatile products, downstream processing may become complicated. This may apply to many biotransformations in which the better selectivity of the biocatalyst is used to transform more complex molecules. In such cases, product isolation can be achieved by, for example, extraction with supercritical CO2 [50]. Recently, membrane processes such as pervaporation and nanofiltration have been used. The use of pervaporation for less volatile compounds such as phenylethanol has been reported by Crespo and co-workers [51]. We have developed a separation process based on nanofiltration [52, 53] which is especially well suited for isolation of nonvolatile compounds such as carbohydrates or charged compounds. It may also be used for easy recovery and/or purification of ionic liquids. [Pg.345]

Grafting of functional monomers onto fluoropolymers produced a wide variety of permselective membranes. Grafting of styrene (with the following sulfonation), (meth)acrylic acids, 4-vinylpyridine, A-vinylpyrrolidone onto PTFE films gave membranes for reverse omosis,32-34 ion-exchange membrane,35-39 membranes for separating water from organic solvents by pervaporation,49-42 as well as other kinds of valuable membranes. [Pg.99]

To attain this goal, a pervaporation technique has been proposed, using a PVA composite membrane, made by casting of a mixture of PVA aqueous solution and a GA one on a polyethersulfone (PES) porous support, solvent evaporation and thermic curing [72], Excellent dehydration performance has been obtained (separation factor 320 and permeation flux 1.5 kg m 2 h 1, for 90 wt% TFEA in the feed and 80 °C). [Pg.133]

Many other methods for separating isotopes have been described. A partial list includes membrane and membrane pervaporation, thermal diffusion of liquids, mass diffusion, electrolysis and electro-migration, differential precipitation, solvent extraction, biological microbial enrichment, and more. Although not discussed in... [Pg.286]

Pervaporation (PV) is a membrane-based process used to separate aqueous, azeotropic solvent mixtures. This is done using a hydrophihc, non-porous membrane that is highly selective to water. Figure 3.9 shows a typical PV system that produces a dehydrated solvent stream (retentate) from a solvent/water feed. [Pg.77]

Both of the current commercial pervaporation processes concentrate on the separation of VOCs from contaminated water. This separation is relatively easy, because organic solvents and water have very different polarities and exhibit distinct membrane permeation properties. No commercial pervaporation systems have yet been developed for the separation of organic/organic mixtures. However, current membrane technology makes pervaporation for these applications possible, and the process is being actively developed by a number of companies. The first pilot-plant results for an organic-organic application, the separation of methanol from methyl tert-butyl ether/isobutene mixtures, was reported by Separex in 1988 [14,15], This is a particularly favorable application... [Pg.356]

The three current applications of pervaporation are dehydration of solvents, water purification, and organic/organic separations as an alternative to distillation. Currently dehydration of solvents, in particular ethanol and isopropanol, is the only process installed on a large scale. However, as the technology develops, the other applications are expected to grow. Separation of organic mixtures, in particular, could become a major application. Each of these applications is described separately below. [Pg.372]

Most of the early solvent dehydration systems were installed for ethanol dehydration. More recently pervaporation has been applied to dehydration of other solvents, particularly isopropanol used as a cleaning solvent. Dehydration of other solvents, including glycols, acetone and methylene chloride, has been considered. Schematics of pervaporation processes for these separations are shown in Figure 9.13. [Pg.376]

Figure 9.13(b) shows the use of pervaporation to dry a chlorinated solvent, in this case water-saturated ethylene dichloride containing 2000 ppm water. A poly(vinyl alcohol) dehydration membrane can easily produce a residue containing less than 10 ppm water and a permeate containing about 50 wt% water. On condensation the permeate vapor separates into two phases, a very small water... [Pg.376]


See other pages where Pervaporation solvent separation is mentioned: [Pg.45]    [Pg.46]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.123]    [Pg.96]    [Pg.152]    [Pg.297]    [Pg.1348]    [Pg.85]    [Pg.144]    [Pg.2054]    [Pg.777]    [Pg.356]    [Pg.427]    [Pg.64]    [Pg.123]    [Pg.132]    [Pg.134]    [Pg.527]    [Pg.144]    [Pg.578]    [Pg.10]    [Pg.365]    [Pg.368]    [Pg.371]    [Pg.378]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Pervaporation separation

Solvent separate

© 2024 chempedia.info