Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeability interactions

Moore T, Chetham PM, Kelly JJ, Stevens T. Signal transduction and regulation of lung endothelial cell permeability interaction between calcium and camp. Am J Physiol 1998 275 L203. [Pg.164]

The factors to consider in the selection of cross-flow filtration include the cross-flow velocity, the driving pressure, the separation characteristics of the membrane (permeability and pore size), size of particulates relative to the membrane pore dimensions, and the hydrodynamic conditions within the flow module. Again, since particle-particle and particle-membrane interactions are key, broth conditioning (ionic strength, pH, etc.) may be necessary to optimize performance. [Pg.2058]

Stannett and Szwarc have argued that the permeability is a product of a factor F determined by the nature of the polymer, a factor G determined by the nature of gas and an interaction factor H (considered to be of little significance and assumed to be unity). [Pg.102]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

The singlet-level theories have also been applied to more sophisticated models of the fluid-solid interactions. In particular, the structure of associating fluids near partially permeable surfaces has been studied in Ref. 70. On the other hand, extensive studies of adsorption of associating fluids in a slit-like [71-74] and in spherical pores [75], as well as on the surface of spherical colloidal particles [29], have been undertaken. We proceed with the application of the theory to more sophisticated impermeable surfaces, such as those of crystalline solids. [Pg.182]

The transmembrane potential derived from a concentration gradient is calculable by means of the Nemst equation. If K+ were the only permeable ion then the membrane potential would be given by Eq. 1. With an ion activity (concentration) gradient for K+ of 10 1 from one side to the other of the membrane at 20 °C, the membrane potential that develops on addition of Valinomycin approaches a limiting value of 58 mV87). This is what is calculated from Eq. 1 and indicates that cation over anion selectivity is essentially total. As the conformation of Valinomycin in nonpolar solvents in the absence of cation is similar to that of the cation complex 105), it is quite understandable that anions have no location for interaction. One could with the Valinomycin structure construct a conformation in which a polar core were formed with six peptide N—H moieties directed inward in place of the C—O moieties but... [Pg.211]

Table 7. Thermodynamic functions of the interaction between proteins and heteroreticular highly permeable Biocarb-T-biosorbent (MA-HHTT copolymer)... Table 7. Thermodynamic functions of the interaction between proteins and heteroreticular highly permeable Biocarb-T-biosorbent (MA-HHTT copolymer)...
High sorption capacities with respect to protein macromolecules are observed when highly permeable macro- and heteroreticular polyelectrolytes (biosorbents) are used. In buffer solutions a typical picture of interaction between ions with opposite charges fixed on CP and counterions in solution is observed. As shown in Fig. 13, in the acid range proteins are not bonded by carboxylic CP because the ionization of their ionogenic groups is suppressed. The amount of bound protein decreases at high pH values of the solution because dipolar ions proteins are transformed into polyanions and electrostatic repulsion is operative. The sorption maximum is either near the isoelectric point of the protein or depends on the ratio of the pi of the protein to the pKa=0 5 of the carboxylic polyelectrolyte [63]. It should be noted that this picture may be profoundly affected by the mechanism of interaction between CP and dipolar ions similar to that describedby Eq. (3.7). [Pg.22]

The primary mode of action of this class of antimycotics is interference with uptake and accumulation of products required for cell membrane synthesis. In higher concentrations it causes a disturbance of the cellular permeability. Some investigations show an interaction with Fe(M)- ions the compounds acting as chelators. Very high concentrations interfere with the function of fungal mitochondria. [Pg.132]

Amphotericin B, is a polyene antibiotic, used in the therapy of systemic fungal infections. Its mode of action exploits differences in membrane composition between the pathogen and the human host. Ergosterol, the predominant sterol of fungi, plants, and some protozoan parasites, interacts with Amphotericin B, resulting in an increased ion permeability of the membrane. Humans contain cholesterol, which has a low affinity for amphotericin B. [Pg.178]

Multilayered materials owe their properties and behavior to the properties of and the interactions between the components (5). Each of the two or more components contributes its particular property to the total performance of the multilayered material. For example, in Pouch 1, Table II, the aluminum foil provides high oxygen and water vapor permeability resistance, poly (ethylene terephthalate) provides structural strength and stiffness, and the ethylene-butene copolymer provides a heat sealable layer. If the components of the multilayered materials interact then the whole would be something different than the sum of its parts. In other words, the properties of the components of the multilayered materials are not independent of one another but rather are interdependent. [Pg.97]

Biomedical Applications Due to their excellent blood compatibility (low interaction with plasma proteins) and high oxygen and moisture permeabilities, siloxane containing copolymers and networks have been extensively evaluated and used in the construction of blood contacting devices and contact lenses 376). Depending on the actual use, the desired mechanical properties of these materials are usually achieved by careful design and selection of the organic component in the copolymers. [Pg.72]

Mansueto et al. suggested that the susceptibility of embryos to toxicants could be first related to their interaction with egg membrane where they could provoke changes of permeability, of transmembrane potential, and of receptors distribution which could in turn drastically interfere with normal cell physiology. Cima et al. observed that TBT alters, immediately after the entry of... [Pg.421]


See other pages where Permeability interactions is mentioned: [Pg.357]    [Pg.150]    [Pg.357]    [Pg.150]    [Pg.554]    [Pg.295]    [Pg.2194]    [Pg.257]    [Pg.372]    [Pg.234]    [Pg.313]    [Pg.314]    [Pg.319]    [Pg.784]    [Pg.795]    [Pg.133]    [Pg.134]    [Pg.169]    [Pg.181]    [Pg.1122]    [Pg.156]    [Pg.132]    [Pg.324]    [Pg.789]    [Pg.852]    [Pg.888]    [Pg.1045]    [Pg.1051]    [Pg.1246]    [Pg.66]    [Pg.127]    [Pg.186]    [Pg.189]    [Pg.379]    [Pg.387]    [Pg.29]    [Pg.185]    [Pg.13]    [Pg.14]   


SEARCH



© 2024 chempedia.info