Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pericyclic reactions frontier molecular orbital theory

The period 1930-1980s may be the golden age for the growth of qualitative theories and conceptual models. As is well known, the frontier molecular orbital theory [1-3], Woodward-Hoffmann rules [4, 5], and the resonance theory [6] have equipped chemists well for rationalizing and predicting pericyclic reaction mechanisms or molecular properties with fundamental concepts such as orbital symmetry and hybridization. Remarkable advances in aeative synthesis and fine characterization during recent years appeal for new conceptual models. [Pg.221]

Houk, K.N. "Application of Frontier Molecular Orbital Theory to Pericyclic Reactions", in "Pericyclic Reactions", A.P. [Pg.337]

Two studies on the mechanism of this type of [4 + 2] cycloaddition which have led to very di erent interpretations have appeared. Mock and Nugent suggested that the Diels-Alder reactions of N-sulfi-nyl-p-toluenesulfonamide are stepwise, ionic processes. On the other hand, Hanson and Stockbum prefer a concerted, pericyclic mechanism in accord with frontier molecular orbital theory. Both proposals satisfactorily rationalize the observed regioselectivity of these reactions. [Pg.424]

Pericyclic reactions are routinely classified as"allowed"or"forbidden"with a particular structure for the transition state. In practice, this classification means that one geometry for the reaction has a low energy transition state (allowed) or that a different geometry has a very high energy transition state (forbidden). To determine whether a reaction is allowed or forbidden, a handful of approaches exist. We will examine one approach frontier molecular orbital theory. [Pg.877]

Throughout this book we have often referred to the importance of the HOMO and LUMO in understanding a molecule s properties. Fukui reasoned that these frontier molecular orbitals might play an especially important role in concerted, pericyclic reactions. We have also noted before that it is always favorable to mix filled molecular orbitals wi th empty molecular orbitals. Combining these ideas led to frontier molecular orbital (FMO) theory, an elegant analysis of the types of reactions of importance here. Quite simply, frontier molecular orbital theory states that if we can achieve a favorable mixing between the HOMO of one reactant and the LUMO of another reactant, a reaction is allowed. If we cannot, the reaction is forbidden. [Pg.888]

The way the substituents affect the rate of the reaction can be rationalised with the aid of the Frontier Molecular Orbital (FMO) theory. This theory was developed during a study of the role of orbital symmetry in pericyclic reactions by Woodward and Hoffinann and, independently, by Fukui Later, Houk contributed significantly to the understanding of the reactivity and selectivity of these processes. ... [Pg.4]

Frontier molecular orbital (FMO) theory 62) has provided new insights into chemical reactivity. This, and the simplicity of its application, has led to its widespread use, particularly in the treatment of pericyclic reactions 63). An FMO treatment depends on the energy of the highest occupied (HOMO) and lowest unoccupied molecular... [Pg.55]

The structural requirements of the mesomeric betaines described in Section III endow these molecules with reactive -electron systems whose orbital symmetries are suitable for participation in a variety of pericyclic reactions. In particular, many betaines undergo 1,3-dipolar cycloaddition reactions giving stable adducts. Since these reactions are moderately exothermic, the transition state can be expected to occur early in the reaction and the magnitude of the frontier orbital interactions, as 1,3-dipole and 1,3-dipolarophile approach, can be expected to influence the energy of the transition state—and therefore the reaction rate and the structure of the product. This is the essence of frontier molecular orbital (EMO) theory, several accounts of which have been published. 16.317 application of the FMO method to the pericyclic reactions of mesomeric betaines has met with considerable success. The following section describes how the reactivity, electroselectivity, and regioselectivity of these molecules have been rationalized. [Pg.89]

Three levels of explanation have been advanced to account for the patterns of reactivity encompassed by the Woodward-Hoffmann rules. The first draws attention to the frequency with which pericyclic reactions have a transition structure with (An + 2) electrons in a cyclic conjugated system, which can be seen as being aromatic. The second makes the point that the interaction of the appropriate frontier orbitals matches the observed stereochemistry. The third is to use orbital and state correlation diagrams in a compellingly satisfying treatment for those cases with identifiable elements of symmetry. Molecular orbital theory is the basis for all these related explanations. [Pg.214]

Although Otto Diels and Kurt Alder won the 1950 Nobel Prize in Chemistry for the Diels-Alder reaction, almost 20 years later R. Hoffmann and R. B. Woodward gave the explanation of this reaction. They published a classical textbook, The Conservation of Orbital Symmetry. K. Fukui (the co-recipient with R. Hoffmann of the 1981 Nobel Prize in Chemistry) gave the Frontier molecular orbital (FMO) theory, which also explains pericyclic reactions. Both theories allow us to predict the conditions under which a pericyclic reaction will occur and what the stereochemical outcome will be. Between these two fundamental approaches to pericyclic reactions, the FMO approach is simpler because it is based on a pictorial approach. Another method similar to the FMO approach of analyzing pericyclic reactions is the transition state aromaticity approach. [Pg.316]

More recently, molecular orbital theory has provided a basis for explaining many other aspects of chemical reactivity besides the allowedness or otherwise of pericyclic reactions. The new work is based on the perturbation treatment of molecular orbital theory, introduced by Coulson and Longuet-Higgins,2 and is most familiar to organic chemists as the frontier orbital theory of Fukui.3 Earlier molecular orbital theories of reactivity concentrated on the product-like character of transition states the concept of localization energy in aromatic substitution is a well-known example. The perturbation theory concentrates instead on the other side of the reaction coordinate. It looks at how the interaction of the molecular orbitals of the starting materials influences the transition state. Both influences on the transition state are obviously important, and it is therefore important to know about both of them, not just the one, if we want a better understanding of transition states, and hence of chemical reactivity. [Pg.1]

Fukui described pericyclic reactions in terms of frontier molecular orbital (FMO) theory. If the interaction of the HOMO of one reactant with the LUMO of the other reactant leads to bonding interactions, then the pericyclic... [Pg.756]

Another explanation has been proposed by K. Fukuii on the basis of frontier molecular orbitals (HOMO—LUMO) of the substrates this method is known as the frontier molecular orbitals (FMO) method. Alternatively, the PMO theory based on the Woodward—Hoffmann rule and Hiickel-Mobius method is also used to explain the results of pericyclic reactions. [Pg.14]

Discuss Frontier Molecular Orbital (F.M.O.) method for pericyclic reactions. What are electrocyclic reactions Drawing correlation diagram, describe the comrotatoiy and disrotatory interconversion of cyclobutene and butadiene. Discuss Frontier Molecular Orbital (F.M.O.) method of analysing electrocyclic reactions. Derive selection rules for electrocyclic reactions. What are electrocyclic reactions Drawing correlation diagram discuss disrotatory and conrotatory interconversion of cyclobutene and butadiene. Support the results of correlation diagram by F.M.O. theory. [Pg.325]

However, despite their proven explanatory and predictive capabilities, all well-known MO models for the mechanisms of pericyclic reactions, including the Woodward-Hoffmann rules [1,2], Fukui s frontier orbital theory [3] and the Dewar-Zimmerman treatment [4-6] share an inherent limitation They are based on nothing more than the simplest MO wavefunction, in the form of a single Slater determinant, often under the additional oversimplifying assumptions characteristic of the Hiickel molecular orbital (HMO) approach. It is now well established that the accurate description of the potential surface for a pericyclic reaction requires a much more complicated ab initio wavefunction, of a quality comparable to, or even better than, that of an appropriate complete-active-space self-consistent field (CASSCF) expansion. A wavefunction of this type typically involves a large number of configurations built from orthogonal orbitals, the most important of which i.e. those in the active space) have fractional occupation numbers. Its complexity renders the re-introduction of qualitative ideas similar to the Woodward-Hoffmann rules virtually impossible. [Pg.328]

The comparison of the energies of a-, a -, 77- and 77 -orbitals of ethene is shown in Fig. 8.6. The bonding electrons are placed in the two orbitals with lowest energies, ct and 77, in the ground state of ethene. The 77-orbital is the highest occupied molecular orbital (HOMO) and 77 -orbital is the lowest unoccupied molecular orbital (LUMO). Both HOMO and LUMO are referred to as frontier orbitals (see FMO theory ) and are used in analyzing pericyclic reactions. [Pg.318]

From the foregoing discussion it appears that the frontier orbital method is at once a simple, concise, and accurate method for assessing the stereochemical outcome of pericyclic reactions. Furthermore, it is a method that is equally applicable to symmetrical and to unsymmetrical systems. There are some disadvantages in the theory, however. Firstly, it is necessary to derive the general phase characteristics of the HOMO and LUMO levels. Hiickel molecular calculations can be used for tliis purpose, but there are available a number of approximate methods, for example the electron-in-a-box model, which are usually satisfactory even if they are more difficult to apply to more complex systems. Nevertheless, frontier orbital analysis is quicker and more simple than the formalized correlation diagram approach, and with a little practice one can intuitively arrive at the correct relative phase relationsliips in the HOMO and LUMO levels. [Pg.107]


See other pages where Pericyclic reactions frontier molecular orbital theory is mentioned: [Pg.197]    [Pg.2]    [Pg.374]    [Pg.89]    [Pg.286]    [Pg.527]    [Pg.506]    [Pg.205]    [Pg.893]    [Pg.19]    [Pg.868]    [Pg.102]   
See also in sourсe #XX -- [ Pg.846 , Pg.847 ]




SEARCH



Frontier

Frontier Orbital theory

Frontier molecular orbital

Frontier molecular orbital theory

Frontier molecular orbital theory reactions

Frontier molecular orbitals

Frontier orbitals

Molecular Orbitals Theory

Molecular frontier

Molecular orbit theory

Molecular orbital theory

Molecular orbital theory, pericyclic

Orbital, frontier

Orbitals reaction

Pericyclic

Pericyclic molecular

Pericyclic reactions

Pericyclic reactions molecular orbital theory

Pericyclic reactions molecular orbitals

Reaction molecular

Reaction molecular theory

© 2024 chempedia.info