Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptidyl-RNA

P-site The peptidyl site on the ribosome to which Met-tRNA is brought to base pair with the mRNA sequence AUG. It is also the site to which the peptidyl RNA is moved in a process known as translocation following the formation of a new peptide bond. [Pg.85]

Peptidyl transfer from the peptidyl /RNA to newly bound aminoacyl /RNA on the acceptor site. [Pg.239]

Emetine (Fig. 7-9) in the form of the crude drug obtained from the roots and rhizomes of Ipecac (Cephaelis ipecacuanha) has been in use since the seventeenth century. The alkaloid, as the hydrochloride, has been used parenterally to treat amebic dysentery. It is also effective in hepatic infestation, but not against amebic cysts. Because of its cardiac toxicity and emetogenic properties, it has been superseded by metronidazole and chloroquine, but it is still used as an alternative. The amebicidal mechanism of emetine is protein synthesis inhibition by interference of peptidyl-RNA translocation. Since this action is general to eukaryotic cells, its relative selectivity in the presence of mammalian cells is not well understood. Unrelated uses of Ipecac (presumably due to its alkaloid content) are as an expectorant in cough preparations and an emergency emetic (Syrup of Ipecac). [Pg.291]

Perhaps the most significant case of catalysis by RNA occurs in protein synthesis. Harry F. NoIIer and his colleagues have found that the peptidyl transferase reaction, which is the reaction of peptide bond formation during protein synthesis (Figure 14.24), can be catalyzed by 50S ribosomal subunits (see Chapter 12) from which virtually ail of the protein has been removed. These... [Pg.455]

Figure 1 Schematic drawing of the morphology of the ribosome. The ribosomal subunits are labeled, as are the approximate locations of their respective functional centers. The drawing is a transparent view from the solvent side of the small subunit. Transfer RNAs are shown in different binding states with the arrow indicating their direction of movement through the ribosome. The tRNA anticodon ends are oriented towards the viewer, whereas the 3-ends of the tRNAs are oriented towards the peptidyl transferase region on the large subunit. The letters h and b denote the head and body regions on the 30S subunit, respectively. Figure 1 Schematic drawing of the morphology of the ribosome. The ribosomal subunits are labeled, as are the approximate locations of their respective functional centers. The drawing is a transparent view from the solvent side of the small subunit. Transfer RNAs are shown in different binding states with the arrow indicating their direction of movement through the ribosome. The tRNA anticodon ends are oriented towards the viewer, whereas the 3-ends of the tRNAs are oriented towards the peptidyl transferase region on the large subunit. The letters h and b denote the head and body regions on the 30S subunit, respectively.
Finally, to produce the structural and functional devices of the cell, polypeptides are synthesized by ribosomal translation of the mRNA. The supramolecular complex of the E. coli ribosome consists of 52 protein and three RNA molecules. The power of programmed molecular recognition is impressively demonstrated by the fact that aU of the individual 55 ribosomal building blocks spontaneously assemble to form the functional supramolecular complex by means of noncovalent interactions. The ribosome contains two subunits, the 308 subunit, with a molecular weight of about 930 kDa, and the 1590-kDa 50S subunit, forming particles of about 25-nm diameter. The resolution of the well-defined three-dimensional structure of the ribosome and the exact topographical constitution of its components are still under active investigation. Nevertheless, the localization of the multiple enzymatic domains, e.g., the peptidyl transferase, are well known, and thus the fundamental functions of the entire supramolecular machine is understood [24]. [Pg.395]

In addition to the catalytic action served by the snRNAs in the formation of mRNA, several other enzymatic functions have been attributed to RNA. Ribozymes are RNA molecules with catalytic activity. These generally involve transesterification reactions, and most are concerned with RNA metabofism (spfic-ing and endoribonuclease). Recently, a ribosomal RNA component was noted to hydrolyze an aminoacyl ester and thus to play a central role in peptide bond function (peptidyl transferases see Chapter 38). These observations, made in organelles from plants, yeast, viruses, and higher eukaryotic cells, show that RNA can act as an enzyme. This has revolutionized thinking about enzyme action and the origin of life itself. [Pg.356]

The a-amino group of the new aminoacyl-tRNA in the A site carries out a nucleophilic attack on the esterified carboxyl group of the peptidyl-tRNA occupying the P site (peptidyl or polypeptide site). At initiation, this site is occupied by aminoacyl-tRNA mef. This reaction is catalyzed by a peptidyltransferase, a component of the 285 RNA of the 605 ribosomal subunit. This is another example of ribozyme activity and indicates an important—and previously unsuspected—direct role for RNA in protein synthesis (Table 38-3). Because the amino acid on the aminoacyl-tRNA is already activated, no further energy source is required for this reaction. The reaction results in attachment of the growing peptide chain to the tRNA in the A site. [Pg.368]

The answer is b. (Hardman, p 1131.) Chloramphenicol inhibits protein synthesis in bacteria and, to a lesser extent, in eukaryotic cells. The drug binds reversibly to the. 505 ribosomal subunit and prevents attachment of aminoacybtransfer RNA (tRNA) to its binding site. The amino acid substrate is unavailable for peptidyl transferase and peptide bond formation. [Pg.81]

Iordanov, M. S. et al. Ribotoxic stress response Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol. 17, 3373, 1997. [Pg.303]

Ribosomes (79-87) are small organelles 17-23 nm in diameter. They can exist in clusters known as polysomes or be attached to the er where they bind to pores in the er membrane. A major constituent of the er pore is translocon, the heterotrimetric Sec 61 protein complex. Sec 61 binds to the 80s ribosomes (86). Ribosomes consist of subunits, a 30s subunit (16srRNA and 21 proteins), and a 50s subunit (23s and 5s RNAs, > proteins and the catalytic site of peptidyl transferase). Ribosomes are the sites of protein synthesis. [Pg.23]

Figure 4.32 A space-filling model of the 70S ribosome the three RNA molecules—5S, 16S and 23 S—are in white, yellow and purple, respectively ribosomal proteins of the large and small subunit are in blue and green, respectively the tRNA in the A-site, with its 3 -end extending into the peptidyl-transferase cavity is in red and the P-site tRNA is in yellow. (From Moore and Steitz, 2005. Copyright (2005) with permission from Elsevier.)... Figure 4.32 A space-filling model of the 70S ribosome the three RNA molecules—5S, 16S and 23 S—are in white, yellow and purple, respectively ribosomal proteins of the large and small subunit are in blue and green, respectively the tRNA in the A-site, with its 3 -end extending into the peptidyl-transferase cavity is in red and the P-site tRNA is in yellow. (From Moore and Steitz, 2005. Copyright (2005) with permission from Elsevier.)...
The peptidyl transferase centre of the ribosome is located in the 50S subunit, in a protein-free environment (there is no protein within 15 A of the active site), supporting biochemical evidence that the ribosomal RNA, rather than the ribosomal proteins, plays a key role in the catalysis of peptide bond formation. This confirms that the ribosome is the largest known RNA catalyst (ribozyme) and, to date, the only one with synthetic activity. Adjacent to the peptidyl transferase centre is the entrance to the protein exit tunnel, through which the growing polypeptide chain moves out of the ribosome. [Pg.75]

Many examples of catalytic nucleic acids obtained by in vitro selection demonstrate that reactions catalyzed by ribozymes are not restricted to phosphodiester chemistry. Some of these ribozymes have activities that are highly relevant for theories of the origin of life. Hager et al. have outlined five roles for RNA to be verified experimentally to show that this transition could have occurred during evolution [127]. Four of these RNA functionalities have already been proven Its ability to specifically complex amino acids [128-132], its ability to catalyze RNA aminoacylation [106, 123, 133], acyl-transfer reactions [76, 86], amide-bond formation [76,77], and peptidyl transfer [65,66]. The remaining reaction, amino acid activation has not been demonstrated so far. [Pg.116]

Fig. 11. Comparison of the peptidyl transfer reaction in the ribosome and in the selected peptidyltransferase ribozyme. The ribosome contains a binding site for the peptidyl-tRNA (P-site) and for the aminoacyl-tRNA (A-site). In the selected ribozyme the binding site for the AMP-Met-Bio substrate would be analogous to the P-site. The attacking a-amino group which is bound in the A-site in the ribosome is covalently attached to the 5 -end in the ribozyme. Catalytically active RNAs preferentially attach the biotin tag onto themselves and can thus be separated from the inactive ones... Fig. 11. Comparison of the peptidyl transfer reaction in the ribosome and in the selected peptidyltransferase ribozyme. The ribosome contains a binding site for the peptidyl-tRNA (P-site) and for the aminoacyl-tRNA (A-site). In the selected ribozyme the binding site for the AMP-Met-Bio substrate would be analogous to the P-site. The attacking a-amino group which is bound in the A-site in the ribosome is covalently attached to the 5 -end in the ribozyme. Catalytically active RNAs preferentially attach the biotin tag onto themselves and can thus be separated from the inactive ones...
The origin of the idea that a ribosome might be a ribozyme is derived from the experiment in which peptidyl transferase activity was observed even after digestion of protein components of the ribosome [15]. This was surprising because the most important biological function involved in the synthesis of proteins is catalyzed by RNA. Recently, a large ribosomal subunit from Haloarcula marismortui was determined at a resolution of 2.4 A [16, 155]. Importantly, because of the absence of proteins at the active site, it was concluded that the key peptidyl transferase reaction is accomplished by the ribosomal RNA (rRNA) itself, not by proteins. How does it work ... [Pg.244]

Although the details of the catalytic mechanism are still being debated, the peptidyl transfer reaction is clearly catalyzed by RNAs. One of the disad-... [Pg.246]

Synthesis of the peptide bond takes place in the next step. Ribosomal peptidyl-transferase catalyzes (without consumption of ATP or GTP) the transfer of the peptide chain from the tRNA at the P site to the NH2 group of the amino acid residue of the tRNA at the A site. The ribosome s peptidyltransferase activity is not located in one of the ribosomal proteins, but in the 28 S rRNA. Catalytically active RNAs of this type are known as ribo-zymes (cf. p. 246). It is thought that the few surviving ribozymes are remnants of the RNA world"—an early phase of evolution in which proteins were not as important as they are today. [Pg.252]

Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky Ol, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRFl to trigger peptidyl-tRNA hydrolysis. RNA 5 1014-1020... [Pg.24]

Zhang, B. and Cech, T. R. (1998). Peptidyl-transferase ribozymes trans reactions, structural characterization and ribosomal RNA-like features. Chem. Biol, 5,... [Pg.299]


See other pages where Peptidyl-RNA is mentioned: [Pg.113]    [Pg.210]    [Pg.166]    [Pg.113]    [Pg.210]    [Pg.166]    [Pg.527]    [Pg.159]    [Pg.456]    [Pg.937]    [Pg.1085]    [Pg.1086]    [Pg.372]    [Pg.358]    [Pg.367]    [Pg.102]    [Pg.108]    [Pg.119]    [Pg.183]    [Pg.25]    [Pg.2]    [Pg.3]    [Pg.45]    [Pg.46]    [Pg.649]    [Pg.1626]    [Pg.1687]    [Pg.1700]    [Pg.1705]    [Pg.1706]    [Pg.1710]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Peptidyl

© 2024 chempedia.info