Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Penicillin pharmaceutical

Because of the ability of bacteria to develop resistance to penicillin, pharmaceutical companies must continually develop different penicillin compounds for continued use as an antibiotic. Different forms are also used depending on the type of infection, delivery method, and individual. The form discovered by Fleming and used by Florey was benzylpenicillin or Penicillin G. Today there are numerous compounds that are classified as penicillins that are marketed under various trade names. Early penicillins were biosynthetic compounds obtained from molds. Modern penicillins are semisynthetic in which penicillin obtained from natural sources is further synthesized to impart specific properties to the compound. [Pg.212]

Pancreas powder, penicillin, pharmaceuticals, phosphate ores, plastics, polyvinylchloride (PVC), potash, potassium compounds, protein pigments, pyrites, pyrocatechol Raisin seeds, reduced ores, refractoiy materials, rice starch, rock salt... [Pg.363]

Penicillins Pharmaceuticals, milk Methylene blue grafted polyurethane foam UV-Vis 12,15,19 ng mL-1 for penicillin G, amoxicillin, ampicillin Flow injection system with a mini-column at the injection port [505]... [Pg.371]

Therapeutics. Compounds containing the furan or tetrahydrofuran ring are biologically active and are present in a number of pharmaceutical products. Eurfurjdamine [617-89-0] is an intermediate in the diuretic, furosemide. Tetrahydrofurfurylamine [4795-29-3] may also have pharmaceutical applications. 5-(E)imethyiaininomethyi)furfuryi alcohol [15433-79-17 is an intermediate in the preparation of ranitidine, which is used for treating ulcers. 2-Acet5dfuran [1192-62-7] prepared from acetic anhydride and furan is an intermediate in the synthesis of cefuroxime, a penicillin derivative. 2-Euroic acid is prepared by the oxidation of furfural. Both furoic acid [88-14-2] and furoyl chloride [527-69-5] are used as pharmaceutical intermediates. [Pg.83]

The behavior of drops in the centrifugal field has been studied (211) and the residence times and mass-transfer rates have been measured (212). PodbieHiiak extractors have been widely used in the pharmaceutical industry, eg, for the extraction of penicillin, and are increasingly used in other fields as weU. Commercial units having throughputs of up to 98 m /h (26,000 gal/h) have been reported. [Pg.77]

Pharmaceuticals. -Hydroxybenzaldehyde is often a convenient intermediate in the manufacture of pharmaceuticals (qv). For example, 2-(p-hydroxyphenyl)glycine can be prepared in a two-step synthesis starting with -hydroxybenzaldehyde (86). This amino acid is an important commercial intermediate in the preparation of the semisynthetic penicillin, amoxicillin (see ANTIBIOTICS, P-LACTAMs). Many cephalosporin-type antibiotics can be made by this route as well (87). The antiemetic trimethobenzamide [138-56-7] is convenientiy prepared from -hydroxybenzaldehyde (88) (see Gastrointestinal agents). [Pg.508]

Chloroform was used chiefly as an anesthetic and in pharmaceutical preparations immediately prior to World War II. However, these uses have been banned. Annual output in both the United States and the United Kingdom was between 900 and 1350 metric tons. During the war, chloroform production in the United States tripled, largely to meet the requirement for penicillin manufacture. Demand for chloroform continued to increase in the postwar period as its technical appHcations were extended. Consumption continues to increase at a comparatively rapid rate. Chloroform is now used primarily in the manufacture of HCFC-22, monochlorodifluoromethane, a refrigerant, and as a raw material for polytetrafluoroethylene plastics. [Pg.523]

The second most important group of immobilized enzymes is stiU the penicillin G and V acylases. These are used in the pharmaceutical industry to make the intermediate 6-aminopenici11anic acid [551-16-6] (6-APA), which in turn is used to manufacture semisynthetic penicillins, in particular ampicilHn [69-53-4] and amoxicillin [26787-78-0]. This is a remarkable example of how a complex chemical synthesis can be replaced with a simple enzymatic one ... [Pg.291]

Amino acid separations represent another specific application of the technology. Amino acids are important synthesis precursors - in particular for pharmaceuticals -such as, for example, D-phenylglycine or D-parahydroxyphenylglycine in the preparation of semisynthetic penicillins. They are also used for other chiral fine chemicals and for incorporation into modified biologically active peptides. Since the unnatural amino acids cannot be obtained by fermentation or from natural sources, they must be prepared by conventional synthesis followed by racemate resolution, by asymmetric synthesis, or by biotransformation of chiral or prochiral precursors. Thus, amino acids represent an important class of compounds that can benefit from more efficient separations technology. [Pg.217]

Fine chemicals There are many applications of the austenitic steels in the manufacture and storage of fine chemicals and pharmaceutical products. These include storage tanks, pipelines, valves, stills, steam-jacketed pans, mixing vessels, filters and tableting machinery. Considerable use has been made of these steels in penicillin production. [Pg.560]

Paton, Sir William, 2 Penicillin, 149, 150f Perospirone, 163f Pharmaceutics, 1, 169 Pharmacodynamics, 1—2, 163 Pharmacognosy, 1 Phar maco kinetics absorption, 163—164 clinical, 165... [Pg.297]

The non-penicillin wastewater from a pharmaceutical company was collected and used in the batch aeration wastewater treatment experiment. The pharmaceutical wastewater had a clear orange colour, strong odour, contained toxic chemicals and had a COD value in the range of 3000-30,000 mg per litre. The pH of the wastewater was neutralised and monitored for each experimental ran, as the bacteria would have a higher rate of propagation at neutral pH. [Pg.46]

A batch process is customary for producing antibiotics. Submerged culture is used to propagate fungus with suitable carbohydrate resources. This assumption is based on simplicity in calculations and the normal use of penicillin in die pharmaceutical industry. Assume we... [Pg.231]

The Penicillin Committee became the nucleus of research and production of penicillin, and the efforts of many laboratories, including those of Morin-aga Confectionery, Banyu Pharmaceutical, and the Yamagata Union of Food Companies, brought penicillin into practical use in Japan, especially in the military, by the end of 1944, and many hopeless septicemia patients were... [Pg.4]

In some cases enzymes can increase the rate of reaction by up to lO times. Carnell and Roberts (1997) have briefly discussed the scope of biotransformations that are used to make pharmaceuticals like penicillins, cephalosporines, erythromycin, lovastatin, cyclosporin, etc., and for food additives like citric acid, L-glutamate, and L-lysine. A very successful transformation by Zeneca has been that of benzene reduction, with Pseudomonase Putida, to dihydrocatechol and catechol the dihydro derivative is used to produce (+/-) pinitol. Fluorobenzene has been converted to fluorodihydrocatechol, an intermediate for pharmaceuticals. The highly stereo selective Bayer-Villeger reaction has been carried out with genetically engineered S-cerevisvae. Hydrolases have allowed enantioselective, and in some cases regioselective, hydrolysis of racemic esters. [Pg.157]

The history of penicillin, which is produced from molds, is different. Penicillin is a powerful antibacterial substance that came into extensive use during World War II. There still is no known synthetic way of producing penicillin economically. If the pharmaceutical companies had refused to mass-produce this drug by fermentation because they feared it would soon be synthesized, then millions of people would have been deprived of its healing powers, and those who could have obtained it would have spent ten to one hundred times more for it. [Pg.11]


See other pages where Penicillin pharmaceutical is mentioned: [Pg.340]    [Pg.347]    [Pg.340]    [Pg.340]    [Pg.347]    [Pg.340]    [Pg.657]    [Pg.441]    [Pg.501]    [Pg.104]    [Pg.120]    [Pg.143]    [Pg.476]    [Pg.71]    [Pg.54]    [Pg.226]    [Pg.377]    [Pg.525]    [Pg.292]    [Pg.738]    [Pg.738]    [Pg.79]    [Pg.26]    [Pg.43]    [Pg.46]    [Pg.1259]    [Pg.103]    [Pg.6]    [Pg.453]    [Pg.151]    [Pg.272]   


SEARCH



Pharmaceutical industry penicillin

Reactions Between Penicillins and Pharmaceutical Adjuvants

© 2024 chempedia.info