Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle size, reactants

In contrast to sodium chloride, langbeinite has an extremely slow rate of solution. Upon control of agitation time, essentially all the sodium chloride dissolves but most of the langbeinite remains as a soHd. Langbeinite is separated from the brine, dried, and then screened into granular, standard, and special-standard particle sizes. These fractions are marketed directiy. In one plant, the unsalable fines are used as the source of sulfate reactant for the production of potassium sulfate. [Pg.531]

These results indicated that the particle size of a precipitate decreases with increasing concentration of the reactants. For the production of a crystalline... [Pg.421]

Discussion. The turbidity of a dilute barium sulphate suspension is difficult to reproduce it is therefore essential to adhere rigidly to the experimental procedure detailed below. The velocity of the precipitation, as well as the concentration of the reactants, must be controlled by adding (after all the other components are present) pure solid barium chloride of definite grain size. The rate of solution of the barium chloride controls the velocity of the reaction. Sodium chloride and hydrochloric acid are added before the precipitation in order to inhibit the growth of microcrystals of barium sulphate the optimum pH is maintained and minimises the effect of variable amounts of other electrolytes present in the sample upon the size of the suspended barium sulphate particles. A glycerol-ethanol solution helps to stabilise the turbidity. The reaction vessel is shaken gently in order to obtain a uniform particle size each vessel should be shaken at the same rate and the same number of times. The unknown must be treated exactly like the standard solution. The interval between the time of precipitation and measurement must be kept constant. [Pg.729]

Measurements [113,368] of interfacial (contact) potentials or calculated values of the relative work functions of reactant and of solid decomposition product under conditions expected to apply during pyrolysis have been correlated with rates of reaction by Zakharov et al. [369]. There are reservations about this approach, however, since the magnitudes of work functions of substances have been shown to vary with structure and particle size especially high values have been reported for amorphous compounds [370,371]. Kabanov [351] estimates that the electrical field in the interfacial zone of contact between reactant and decomposition product may be of the order of 104 106 V cm 1. This is sufficient to bring about decomposition. [Pg.33]

If the phases present can be unambiguously identified, microscopy can be used to determine the geometry of interface initiation and advance, and to provide information about particle sizes of components of mixed reactants in a powder. Problems of interpretation arise where materials are poorly crystallized and where crystallites are small, opaque, porous or form solid solutions. With the hot-stage microscope, the progress of reactions can be followed in some instances and the occurrence of sintering and/or melting detected. [Pg.38]

Mampel extended the treatment to include due allowance for three-dimensional growth of product into the particles by considering the latter to consist of a series of concentric thin spherical shells. The fractional reaction within each such shell was calculated and the total reaction found by integration to include all such shells. This analysis, which includes the effects of overlap, ingestion and also particle size of the reactant, is not amenable to general solution, but the following special cases are of interest. [Pg.57]

Hulbert [77] points out that, in general, attempts to include an allowance for the influence of particle size variations in the reactant mixtures on kinetic analyses using the above equations have been unsatisfactory because some of the parameters are not readily defined. Kapur [42], working with powders of known crystal size distribution, indicated that the overall extent of reaction can be estimated by a summation of the individual contributions from each size fraction and thus the best kinetic fit determined. [Pg.70]

K2C03 3 H202 contains hydrogen peroxide of crystallization and the solid phase decomposition involves the production of the free radicals OH and HOi, detected by EPR measurements [661]. a—Time curves were sigmoid and E = 138 kJ mole-1 for reactions in the range 333—348 K. The reaction rate was more rapid in vacuum than in nitrogen, possibly through an effect on rate of escape of product water, and was also determined by particle size. From microscopic observations, it was concluded that centres of decomposition were related to the distribution of dislocations in the reactant particles. [Pg.151]

Hajek et al. [173] have reported a detailed kinetic study of the solid phase decomposition of the ammonium salts of terephthalic and iso-phthalic acids in an inert-gas fluidized bed (373—473 K). Simultaneous release of both NH3 molecules occurred in the diammonium salts, without dehydration or amide formation. Reactant crystallites maintained their external shape and size during decomposition, the rate obeying the contracting volume equation [eqn. (7), n = 3]. For reaction at 423 K of material having particle sizes 0.25—0.40 mm, the rate coefficients for decompositions of diammonium terephthalate, monoammonium tere-phthalate and diammonium isophthalate were in the ratio 7.4 1.0 134 and values of E (in the same sequence) were 87,108 and 99 kJ mole-1. [Pg.203]

The (en) compound developed nuclei which advanced rapidly across all surfaces of the reactant crystals and thereafter penetrated the bulk more slowly. Kinetic data fitted the contracting volume equation [eqn. (7), n = 3] and values of E (67—84 kJ mole"1) varied somewhat with the particle size of the reactant and the prevailing atmosphere. Nucleus formation in the (pn) compound was largely confined to the (100) surfaces of reactant crystallites and interface advance proceeded as a contracting area process [eqn. (7), n = 2], It was concluded that layers of packed propene groups within the structure were not penetrated by water molecules and the overall reaction rate was controlled by the diffusion of H20 to (100) surfaces. [Pg.237]

This account of the kinetics of reactions between (inorganic) solids commences with a consideration of the reactant mixture (Sect. 1), since composition, particle sizes, method of mixing and other pretreatments exert important influences on rate characteristics. Some comments on experimental methods are included here. Section 2 is concerned with reaction mechanisms formulated to account for observed behaviour, including references to rate processes which involve diffusion across a barrier layer. This section also includes a consideration of the application of mechanistic criteria to the classification of the kinetic characteristics of solid-solid reactions. Section 3 surveys rate processes identified as the decomposition of a solid catalyzed by a solid. Section 4 reviews other types of solid + solid reactions, which may be conveniently subdivided further into the classes... [Pg.248]


See other pages where Particle size, reactants is mentioned: [Pg.251]    [Pg.284]    [Pg.251]    [Pg.284]    [Pg.477]    [Pg.576]    [Pg.400]    [Pg.172]    [Pg.522]    [Pg.1665]    [Pg.2369]    [Pg.2383]    [Pg.144]    [Pg.3]    [Pg.634]    [Pg.43]    [Pg.712]    [Pg.778]    [Pg.75]    [Pg.142]    [Pg.362]    [Pg.7]    [Pg.8]    [Pg.12]    [Pg.13]    [Pg.41]    [Pg.58]    [Pg.72]    [Pg.77]    [Pg.84]    [Pg.170]    [Pg.170]    [Pg.206]    [Pg.232]    [Pg.234]    [Pg.250]    [Pg.263]    [Pg.270]    [Pg.274]    [Pg.45]    [Pg.302]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



© 2024 chempedia.info