Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms, formulation

This account of the kinetics of reactions between (inorganic) solids commences with a consideration of the reactant mixture (Sect. 1), since composition, particle sizes, method of mixing and other pretreatments exert important influences on rate characteristics. Some comments on experimental methods are included here. Section 2 is concerned with reaction mechanisms formulated to account for observed behaviour, including references to rate processes which involve diffusion across a barrier layer. This section also includes a consideration of the application of mechanistic criteria to the classification of the kinetic characteristics of solid-solid reactions. Section 3 surveys rate processes identified as the decomposition of a solid catalyzed by a solid. Section 4 reviews other types of solid + solid reactions, which may be conveniently subdivided further into the classes... [Pg.248]

Korman, E. F., Me Lick, J. Stereochemical reaction mechanism formulations for enzyme-catalyzed pyrophosphate hydrolysis, ATP hydrolysis, and ATP synthesis. Bioorganic Chem. 2, 179—190 (1973). [Pg.64]

For such large ranges of pH, the dependence function can be very complex. For example, in the case of aspirin, changing the pH, four different mechanisms of reaction operate and the global rate constant requires several terms [3]. Nevertheless, once the pH-rate profile has been obtained and a reaction mechanism formulated,... [Pg.719]

The most noticeable example is that concerning Ru(bipy)32 + ions in acetonitrile solutions at a Pt electrodes with the reaction mechanism formulated as following. In the electrochemical reactions, the parent ions Ru(bipy)32+ undergo70,71 one-electron reduction (with the added electron localized on individual ligand -orbitals) and oxidation (with removal of a metal t2g electron) followed by ion s annihilation with the formation of the excited 3 Ru(bipy)32 + state and subsequent emission of light. [Pg.485]

An abundance of literature describes how experimental rate data and insights into catalytic chemistry help us understand reaction mechanisms, formulate improved catalysts, and generate kinetic models. However, this literature typically is oriented toward engineering and is beyond the needs of most scientists investigating catalysts in laboratory-scale equipment. [Pg.104]

X (-) rW Y (-) and X " R Y are included in the valence-bond descriptions of the reactants and products. It is needed to help form the reactant-like and productlike complexes. Therefore unless the singlet diradical structure is included in the valence-bond formulation for the + R-Y -> X-R + Y reaction, reactant-like and product-like complexes with intermolecular one-electron bonds will not be formed. A non-concerted SnI reaction mechanism, formulated as... [Pg.278]

The Poisson equation has been used for both molecular mechanics and quantum mechanical descriptions of solvation. It can be solved directly using numerical differential equation methods, such as the finite element or finite difference methods, but these calculations can be CPU-intensive. A more efficient quantum mechanical formulation is referred to as a self-consistent reaction field calculation (SCRF) as described below. [Pg.209]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

The optimal pH-value for the coupling reaction depends on the reactant. Phenols are predominantly coupled in slightly alkaline solution, in order to first convert an otherwise unreactive phenol into the reactive phenoxide anion. The reaction mechanism can be formulated as electrophilic aromatic substitution taking place at the electron-rich aromatic substrate, with the arenediazonium ion being the electrophile ... [Pg.84]

The yV-bromoamide, its anion as well as the isocyanate have been identified as intermediates thus supporting the reaction mechanism as formulated above. [Pg.167]

There have been extensive investigations on the reaction mechanism. In most cases the reaction proceeds via initial nucleophilic addition of ammonia 2 to formaldehyde 1 to give adduct 5, which is converted into an iminium ion species 6 (note that a resonance structure—an aminocarbenium ion can be formulated) through protonation and subsequent loss of water. The iminium ion species 6 then reacts with the enol 7 of the CH-acidic substrate by overall loss of a proton ... [Pg.194]

It is appropriate to emphasize again that mechanisms formulated on the basis of kinetic observations should, whenever possible, be supported by independent evidence, including, for example, (where appropriate) X-ray diffraction data (to recognize phases present and any topotactic relationships [1257]), reactivity studies of any possible (or postulated) intermediates, conductivity measurements (to determine the nature and mobilities of surface species and defects which may participate in reaction), influence on reaction rate of gaseous additives including products which may be adsorbed on active surfaces, microscopic examination (directions of interface advance, particle cracking, etc.), surface area determinations and any other relevant measurements. [Pg.111]

Characteristically, the mechanisms formulated for azide decompositions involve [693,717] exciton formation and/or the participation of mobile electrons, positive holes and interstitial ions. Information concerning the energy requirements for the production, mobility and other relevant properties of these lattice imperfections can often be obtained from spectral data and electrical measurements. The interpretation of decomposition kinetics has often been profitably considered with reference to rates of photolysis. Accordingly, proposed reaction mechanisms have included consideration of trapping, transportation and interactions between possible energetic participants, and the steps involved can be characterized in greater detail than has been found possible in the decompositions of most other types of solids. [Pg.165]

The high values of E generally characteristic of the decomposition reactions of metal oxyhalides are widely interpreted as evidence that the initial step in anion breakdown is the rupture of the X—O bond and that the energy barrier to this reaction is not very sensitive to the properties of the cation present. Information of use in the formulation of reaction mechanisms has been obtained from radiolytic studies of oxyhalogen salts [887-889],... [Pg.190]

As with the decompositions of single solids, rate data for reactions between solids may be tested for obedience to the predictions of appropriate kinetic expressions. From the identification of a satisfactory representation for the reaction, the rate-limiting step or process may be identified and this observation usually contributes to the formulation of a reaction mechanism. It was pointed out in Sect. 1, however, that the number of parameters which must be measured to define completely all contributory reactions rises with the number of participating phases. The difficulties of kinetic analyses are thereby also markedly increased and the factors which have to be considered in the interpretation of rate data include the following. [Pg.252]

In a DTA study [1193] of decomposition reactions in Ag2C03 + CaC03 mixtures, the presence of a response peak, absent on heating the silver salt alone, resulted in the identification of the double salt Ag2C03 2 CaC03, stable at <420 K. One important general consideration which arises from this observation is that the formation of a new phase, by direct interaction between the components of a powder mixture, could easily be overlooked and, in the absence of such information, serious errors could be introduced into attempts to formulate a reaction mechanism from observed kinetic characteristics. Due allowance for this possibility must be included in the interpretation of experimental data. [Pg.266]

Although these reactions are formulated as ionic reactions via 947 and 949, because of the apparent partial formation of polymers and inhibition of the fluoride-catalyzed reaction of pyridine N-oxide 860 with aUyl 82 or benzyltrimethylsilane 83 by sulfur or galvinoxyl yet not by Tempo, a radical mechanism caimot be excluded [61, 62]. The closely related additions of allyltrimethylsilane 82 (cf. Section 7.3) to nitrones 976 are catalyzed by TMSOTf 20 to give, via 977, either o-unsatu-rated hydroxylamines 978 or isoxazoHdines 979 (cf also the additions of 965 to 962a and 969 in schemes 7.20 and 7.21). [Pg.161]

Until recently the products of all nitrile cyclizations by the Thorpe reaction had been formulated as imines, although the products were found in 1955 to be better written as the enamine structure. In order to verify the reaction mechanism of the Thorpe reaction, the solid-state reaction of 84 and Bu OK was monitored by measurement of IR spectra in Nujol mulls. As the reaction proceeds (Scheme 14), the CN absorption of 84 at 2250 cm" decreases and a new CN absorption of the imine intermediate (87) arises at 2143 cm As 87 is converted into 88 by a proton migration, the CN absorption of 87 at 2143 cm" disappears, and only the CN absorption of 88 at 2189 cm remains finally [13]. [Pg.18]

In contrast to the above, other reactions have been found to require base assistance by water in the rate-determining step, i.e. the water activity does appear in the rate law. The mechanism formulated for the condensation of acetaldehyde in sulfuric acid is given in equation (63), following on from the enolization of Scheme 7, subsequent dehydration to crotonaldehyde occurring as shown in Scheme 8. The ky k2, k3 and k 3 steps shown were all studied.246... [Pg.44]


See other pages where Reaction mechanisms, formulation is mentioned: [Pg.5]    [Pg.532]    [Pg.5]    [Pg.532]    [Pg.32]    [Pg.1045]    [Pg.36]    [Pg.143]    [Pg.154]    [Pg.251]    [Pg.265]    [Pg.224]    [Pg.189]    [Pg.17]    [Pg.39]    [Pg.117]    [Pg.284]    [Pg.285]    [Pg.287]    [Pg.49]    [Pg.435]    [Pg.120]    [Pg.163]    [Pg.272]    [Pg.230]    [Pg.97]    [Pg.134]    [Pg.379]    [Pg.102]    [Pg.393]    [Pg.98]    [Pg.306]   
See also in sourсe #XX -- [ Pg.554 ]




SEARCH



Complex reactions mechanisms formulation

Guidelines to formulating reaction mechanism

Reaction formulation

© 2024 chempedia.info