Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle-size dust explosions

Unfortunately, rate of pressure rise and maximum explosion pressure listed in Table 7-31 are subject to uniqueness of the test conditions and are the function of particle size, dust concentration and uniformity, available... [Pg.518]

Many finely divided metal powders in suspension in air are potential e] losion hazards, and causes for ignition of such dust clouds are numerous [Hartmann and Greenwald, Min. MetalL, 26, 331 (1945)]. Concentration of the dust in air and its particle size are important fac tors that determine explosibility. Below a lower Umit of concentration, no explosion can result because the heat of combustion is insufficient to propagate it. Above a maximum limiting concentration, an explosion cannot be produced because insufficient oxygen is available. The finer the particles, the more easily is ignition accomplished and the more rapid is the rate of combustion. This is illustrated in Fig. 20-7. [Pg.1830]

If it is assumed that explosible dust will be present above the MEC, and equipment design data are not required, explosibility testing forP g, and Kg usually has no direct application. However, minimum ignition energy (MIE) testing should be considered to help determine the likelihood of ignition. Since MIE is extremely sensitive to particle size it is especially important to test a sample that is sufficiently fine to represent the worst credible case. [Pg.170]

Solids handling frequently has the potential for dusting, which can lead to potential health and explosion hazards. Handling solids in the form of larger particle size granules or pellets rather than a fine powder reduces the potential for worker exposure. Worker exposure hazards are reduced by formulating dyes as liquids or wet pastes rather than dry solids or powders (Burch, 1986). [Pg.70]

Material Median particle size, pm Minimum explosive concentration g/m= p max bar ga (dp/dt)max> ba r/sec Ksi bar-m sec Dust Hazard Class... [Pg.522]

Material Median particle size, Mm Minimum explosive concentration g/m3 P oux bar ga (dP/dl)max, bar/sec KSt Dust bar-m Hazard sec Class ... [Pg.522]

Dusts, particle sizes, 225 Dusts, hazard class, 521-523 Explosion characteristics, 524 Efficiency, centrifugal pumps, 200 Ejector control, 380 Ejector systems, 343, 344, 351 Air inleakage, table, 366, 367 Applications, 345 Calculations, 359-366 Chilled water refrigeration, 350 Comparison guide, 357, 375 Evacuation lime, 380, 381 Charts, 382 Example, 381 Features, 345... [Pg.626]

All combustible solids can create a dust explosion hazard if dispersed in air as a fine dust within certain concentration limits. Refer to Table 6.2. The hazard increases with decreasing particle size. [Pg.50]

Increasing the surface area of a combustible solid enhances the ease of ignition. Hence dust burns more rapidly than the corresponding bulk solid combustion of dust layers can result in rapid flame spread by train firing . Solid particles less than about 10 pm in diameter settle slowly in air and comprise float dust (see p. 51 for settling velocities). Such particles behave, in some ways, similarly to gas and, if the solid is combustible, a flammable dust-air mixture can form within certain limits. Larger particles also take part, since there is a distribution of particle sizes, and ignition can result in a dust explosion. [Pg.198]

D. Dust explosion covers for the possibility of a dust explosion. The degree of risk is largely determined by the particle size. The penalty factor varies from 0.25 for particles above 175 pm, to 2.0 for particles below 75 pm. [Pg.375]

The finely powdered silicide is a significant dust explosion hazard [1]. The lower explosion limit for a calcium-silicon dust cloud of mean particle size 9.7 pm was measured as 79 g/m3, in good agreement with a calculated value [2], Other dust cloud parameters are presented and related to predictions [3],... [Pg.1328]

Pyrophoricity and detonation behaviour of titanium hydride powders of various particle sizes were studied in comparison with those of titanium metal powders [1]. Maximum dust explosion pressures of 8.2 bar, with a maximum rate of rise of 816 bar/s have been recorded [2]. [Pg.1656]

Finely powdered silicon can give significant dust explosion hazards. Relationships of sensitivity to spark ignition and of explosibility to particle size are studied [1]. Maximum explosion pressures of 6.4 bar, with maximum rate of rise of 884 bar/s have been determined [2], Silicon dust is likely to result from processes using silanes in the gas phase [3],... [Pg.1908]

Attrition of particulate materials occurs wherever solids are handled and processed. In contrast to the term comminution, which describes the intentional particle degradation, the term attrition condenses all phenomena of unwanted particle degradation which may lead to a lot of different problems. The present chapter focuses on two particular process types where attrition is of special relevance, namely fluidized beds and pneumatic conveying lines. The problems caused by attrition can be divided into two broad categories. On the one hand, there is the generation of fines. In the case of fluidized bed catalytic reactors, this will lead to a loss of valuable catalyst material. Moreover, attrition may cause dust problems like explosion hazards or additional burden on the filtration systems. On the other hand, attrition causes changes in physical properties of the material such as particle size distribution or surface area. This can result in a reduction of product quality or in difficulties with operation of the plant. [Pg.435]

Dust Median particle size (Mm) Minimum explosive dust concentration (9/m3) Pmax (bar g) st (bar-m/s) Minimum ignition energy (mJ)... [Pg.261]

Dust explosions are even more difficult to characterize than gaseous explosions. For a gas the molecules are small and of well-defined size. For dust particles the particles are of varying size and many orders of magnitude larger than molecules. Gravity also affects dust particle behavior. [Pg.265]

Dust presents a different type of hazard, because while it has a lower explosive limit, it does not have an upper explosive limit. This can result in a primary explosion, followed by secondary explosions as new air is provided. Secondly, dust does not diffuse away from its point of release, but settles out of the air and accumulates into layers. Unlike vapor, the dust explosion is caused by the radiant heat from one particle igniting the next. Because of this, the lower explosive limits for dusts are greatly higher than for vapors. Also, the size and shape of the dust particles are important factors in effecting its lower explosive limit. [Pg.258]

Dust Median particle size, im Minimum explosive dust cone., g/m3 Pm3x, barg KSl, bar-m/s Minimum ignition energy, mj... [Pg.14]

Explosion and Ignition Hazards, Rept. 6597, Washington, US Bur. Mines, 1965 Hazards of 241 industrial dusts which may explode or bum because of their carbon content are defined, covering particle size and chemical composition in 10 categories. [Pg.80]

The lower explosive limit and minimum explosive concentrations of flax, wool, cotton, jute, hemp and sisal fibres are of the same order of magnitude as those of highly explosive dusts [15], The explosibility of pyrites dusts with sulfur contents above 20% was evaluated experimentally. Dusts of 30% sulfur content gave explosion pressures of 3 bar at pressure rise rates of 16 bar/sec. Mixtures of 60% pyrites and 40% powdered limestone still showed significant pressure effects, and the proportion of limestone actually needed to suppress explosions was considerably above the values currently accepted by mining industries [16], Effects of mixtures of particle sizes in combustible dusts upon minimum ignition temperature (T ") and upon presence or absence of explosion were studied. Presence of 30% of fines in a coarse dust lowers Tf significantly [17], Experimental explosions of polyethylene,... [Pg.133]

The flammability and explosivity of high-sulfur petroleum coke dust (particle size <75 pm) were examined. Air-dried powder was non-explosive but fire-prone above 400°C. A 5 mm layer became incandescent at 420-470° and a dust cloud ignited at 520-660°C [1]. The fire and explosion hazards of petroleum coke or anthracite, when used in the manufacture of furnace electrodes, may be reduced by heat treatment [2],... [Pg.336]

Elutriation is important in most industrial fluidized beds and is generally thought of as a disadvantage. In addition to the small particles which may be present in the initial particle size distribution, fines may be created in the course of operation by the attrition of bed particles. Elutriated particles usually need to be collected and recovered either because they represent the loss of product particles of a given size, because they must be separated from the exhaust gas for environmental reasons, or because of safety concerns there is a considerable risk of a dust explosion with very fine particles and perhaps especially so with many food particulates. Therefore the fluidized bed plant will require ancillary gas cleaning equipment such as a cyclone, filter or electrostatic precipitator to separate the fines from the gas. The loss of a particular size fraction from the bed may change fluidized bed behaviour and it then becomes important to return the fines to the bed continuously. [Pg.43]


See other pages where Particle-size dust explosions is mentioned: [Pg.20]    [Pg.272]    [Pg.326]    [Pg.2313]    [Pg.42]    [Pg.167]    [Pg.70]    [Pg.222]    [Pg.1924]    [Pg.1925]    [Pg.841]    [Pg.855]    [Pg.269]    [Pg.18]    [Pg.134]    [Pg.234]    [Pg.307]    [Pg.406]    [Pg.114]    [Pg.115]    [Pg.215]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Dust explosions

Dust particles

Dusts, particle sizes

Explosions dust explosion

Explosive dusts

Explosives particle size

Particle explosives

© 2024 chempedia.info