Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle polymer solutions

Since the EPI adhesives are emulsion based but cross-linked with isocyanate, they share characteristics with both thermosetting and thermoplastic adhesives. The adhesives are multi-phase systems comprising emulsion particles, polymer solution, cross-linker droplets and filler particles. Just as for other emulsion adhesives, the coalescence of the emulsion particles [18, 19] and the distribution of these in the glue film is important for the bond quality. The cross-linking in the adhesive film is also of great importance for the bond quality as well as for the moisture resistance and heat resistance of the adhesive. [Pg.253]

The parameter /r tunes the stiffness of the potential. It is chosen such that the repulsive part of the Leimard-Jones potential makes a crossing of bonds highly improbable (e.g., k= 30). This off-lattice model has a rather realistic equation of state and reproduces many experimental features of polymer solutions. Due to the attractive interactions the model exhibits a liquid-vapour coexistence, and an isolated chain undergoes a transition from a self-avoiding walk at high temperatures to a collapsed globule at low temperatures. Since all interactions are continuous, the model is tractable by Monte Carlo simulations as well as by molecular dynamics. Generalizations of the Leimard-Jones potential to anisotropic pair interactions are available e.g., the Gay-Beme potential [29]. This latter potential has been employed to study non-spherical particles that possibly fomi liquid crystalline phases. [Pg.2366]

In the limit that the number of effective particles along the polymer diverges but the contour length and chain dimensions are held constant, one obtains the Edwards model of a polymer solution [9, 30]. Polymers are represented by random walks that interact via zero-ranged binary interactions of strength v. The partition frmction of an isolated chain is given by... [Pg.2366]

Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

Vincent B, Edwards J, Emmett S and Greet R 1988 Phase separation in dispersions of weakly-interacting particles in solutions of non-adsorbing polymers Colloid Surf. 31 267-98... [Pg.2694]

This concludes our discussion of the viscosity of polymer solutions per se, although various aspects of the viscous resistance to particle motion continue to appear in the remainder of the chapter. We began this chapter by discussing the intrinsic viscosity and the friction factor for rigid spheres. Now that we have developed the intrinsic viscosity well beyond that first introduction, we shall do the same (more or less) for the friction factor. We turn to this in the next section, considering the relationship between the friction factor and diffusion. [Pg.621]

A detailed examination of the correlation between Vj and M is discussed in references on analytical chemistry such as Ref. 6. We shall only outline the problem, with particular emphasis on those aspects which overlap other topics in this book. To consider the origin of the calibration curve, we begin by picturing a narrow band of polymer solution being introduced at the top of a solvent-filled column. The volume of this solvent can be subdivided into two categories the stagnant solvent in the pores (subscript i for internal) and the interstitial liquid in the voids (subscript v) between the packing particles ... [Pg.646]

In packed beds of particles possessing small pores, dilute aqueous solutions of hydroly2ed polyacrylamide will sometimes exhibit dilatant behavior iastead of the usual shear thinning behavior seen ia simple shear or Couette flow. In elongational flow, such as flow through porous sandstone, flow resistance can iacrease with flow rate due to iacreases ia elongational viscosity and normal stress differences. The iacrease ia normal stress differences with shear rate is typical of isotropic polymer solutions. Normal stress differences of anisotropic polymers, such as xanthan ia water, are shear rate iadependent (25,26). [Pg.140]

Solution Filtration. The polymer solution, free of unacetylated ceUulose, rigid particle contaminants, and dirt, must pass through spinnerets with holes of 30—80 ]lni diameter. Multistage filtration, usuaUy through plate-and-frame filter presses with fabric and paper filter media, removes the extraneous matter before extmsion. Undesirable gelatinous particles, such as the hemiceUulose acetates from ceUulose impurities, tend to be sheared into smaller particles rather than removed. The solution is also aUowed to degas in hoi ding tanks after each state of filtration. [Pg.296]

Heat Exchangers Using Non-Newtonian Fluids. Most fluids used in the chemical, pharmaceutical, food, and biomedical industries can be classified as non-Newtonian, ie, the viscosity varies with shear rate at a given temperature. In contrast, Newtonian fluids such as water, air, and glycerin have constant viscosities at a given temperature. Examples of non-Newtonian fluids include molten polymer, aqueous polymer solutions, slurries, coal—water mixture, tomato ketchup, soup, mayonnaise, purees, suspension of small particles, blood, etc. Because non-Newtonian fluids ate nonlinear in nature, these ate seldom amenable to analysis by classical mathematical techniques. [Pg.495]

Viscosity—Concentration Relationship for Dilute Dispersions. The viscosities of dilute dispersions have received considerable theoretical and experimental treatment, partly because of the similarity between polymer solutions and small particle dispersions at low concentration. Nondeformable spherical particles are usually assumed in the cases of molecules and particles. The key viscosity quantity for dispersions is the relative viscosity or viscosity ratio,... [Pg.173]

As Morawetz puts the matter, an acceptance of the validity of the laws governing colligative properties (i.e., properties such as osmotic pressure) for polymer solutions had no bearing on the question whether the osmotically active particle is a molecule or a molecular aggregate . The colloid chemists, as we have seen, in regard to polymer solutions came to favour the second alternative, and hence created the standoff with the proponents of macromolecular status outlined above. [Pg.42]

Molecular dynamics, in contrast to MC simulations, is a typical model in which hydrodynamic effects are incorporated in the behavior of polymer solutions and may be properly accounted for. In the so-called nonequilibrium molecular dynamics method [54], Newton s equations of a (classical) many-particle problem are iteratively solved whereby quantities of both macroscopic and microscopic interest are expressed in terms of the configurational quantities such as the space coordinates or velocities of all particles. In addition, shear flow may be imposed by the homogeneous shear flow algorithm of Evans [56]. [Pg.519]

Liquids of complex structure, such a polymer solutions and melts, and pseudo-homogeneous suspensions of fine particles, will generally exhibit non-Newtonian behaviour, with their apparent viscosities depending on the rate at which they are sheared, and the time for which they have been subjected to shear. They may also exhibit significant elastic... [Pg.58]

This equation is based on the assumption that pseudoplastic (shear-thinning) behaviour is associated with the formation and rupture of structural linkages. It is based on an experimental study of a wide range of fluids-including aqueous suspensions of flocculated inorganic particles, aqueous polymer solutions and non-aqueous suspensions and solutions-over a wide range of shear rates (y) ( 10 to 104 s 1). [Pg.111]

Chrambach [307] also used the stretched exponential to describe electrophoresis of spherical latex particles in polymer solutions. [Pg.604]

Altenberger, AR TirreU, M Dahler, JS, Hydrodynamic Screening and Particle Dynamics in Porous Media, SemidUute Polymer Solutions and Polymer Gels, Journal of Chemical Physics 84,5122, 1986. [Pg.607]

Ogston, AG Preston, BN Wells, JD, On The Transport of Compact Particles Through Solutions of Chain-Polymers, Proceedings of the Royal Society of London Series A 333, 297, 1973. [Pg.617]

The analogy with the virial expansion of PF for a real gas in powers of 1/F, where the excluded volume occupies an equivalent role, is obvious. If the gas molecules can be regarded as point particles which exert no forces on one another, u = 0, the second and higher virial coefficients (42, Azy etc.) vanish, and the gas behaves ideally. Similarly in the dilute polymer solutions when w = 0, i.e., at 1 = , Eqs. (70), (71), and (72) reduce to vanT Hoff s law... [Pg.532]

The acidic conditions of standard SBA-15 synthesis [35] cause the precipitation of metal nanoparticles without silica encapsulation, or the formation of amorphous silica due to the presence of the polymer used for nanoparticle synthesis. Therefore, the SBA-15 framework was synthesized under neutral condition using sodium fluoride as a hydrolysis catalyst and tetramethylorthosilicate (TMOS) as the silica precursor. Pt particles with different sizes were dispersed in the aqueous template polymer solution sodium fluoride and TMOS were added to the reaction mixture. The slurry aged at 313 K for a day, followed by an additional day at 373 K. Pt(X)/SBA-15-NE (X = 1.7, 2.9, 3.6, and 7.1nm) catalysts were obtained by ex-situ calcination (see Section 3.2). TEM images of the ordered... [Pg.157]

In the previously described electrophoretic methods, the capillary was filled with electrolytes only. Another mode of operation in capillary electrophoresis involves filling the capillary with gel or viscous polymer solutions. If desired, a column can be packed with particles and equipped with a frit.68 This mode of analysis has been favorably used for the size determination of biologically important polymers, such as DNA, proteins, and polysaccharides. The most frequently used polymers in capillary gel electrophoresis are cross-linked or linear polyacrylamide,69 cellulose derivatives,70-75 agarose,76 78 and polyethylene glycols. [Pg.400]


See other pages where Particle polymer solutions is mentioned: [Pg.469]    [Pg.78]    [Pg.469]    [Pg.78]    [Pg.2365]    [Pg.2679]    [Pg.263]    [Pg.143]    [Pg.168]    [Pg.266]    [Pg.431]    [Pg.137]    [Pg.331]    [Pg.364]    [Pg.618]    [Pg.100]    [Pg.119]    [Pg.209]    [Pg.87]    [Pg.165]    [Pg.173]    [Pg.175]    [Pg.777]    [Pg.508]    [Pg.512]    [Pg.578]    [Pg.102]    [Pg.283]    [Pg.94]    [Pg.390]    [Pg.405]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Particle solution

Polymer particles

Solute particles

© 2024 chempedia.info