Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle formation model

Several reported chemical systems of gas-liquid precipitation are first reviewed from the viewpoints of both experimental study and industrial application. The characteristic feature of gas-liquid mass transfer in terms of its effects on the crystallization process is then discussed theoretically together with a summary of experimental results. The secondary processes of particle agglomeration and disruption are then modelled and discussed in respect of the effect of reactor fluid dynamics. Finally, different types of gas-liquid contacting reactor and their respective design considerations are overviewed for application to controlled precipitate particle formation. [Pg.232]

The reaction engineering model links the penetration theory to a population balance that includes particle formation and growth with the aim of predicting the average particle size. The model was then applied to the precipitation of CaC03 via CO2 absorption into Ca(OH)2aq in a draft tube bubble column and draws insight into the phenomena underlying the crystal size evolution. [Pg.255]

The combination of non-ideal phase behaviour of solutions, the non-linearity of particle formation kinetics, the multi-dimensionality of crystals, their interactions and difficulties of modelling, instrumentation and measurement have conspired to make crystallizer control a formidable engineering challenge. Various aspects of achieving control of crystallizers have been reviewed by Rawlings etal. (1993) and Rohani (2001), respectively. [Pg.287]

Jones, A.G., Hostomsky, J. and Waclii, S., 1996. Modelling and analysis of particle formation during agglomerative crystal precipitation processes. Chemical Engineering Communications, 146, 105-130. [Pg.312]

From the electron micrographs, assuming that PVAc particles in the latex are the same size, the formation model of the porous film from the latex film can be illustrated as in Fig. 3 [19]. When the latex forms a dried film over minimum film-forming temperature, it is concluded that PVA coexisted in the latex and is not excluded to the outside of the film during filming, but is kept in spaces produced by the close-packed structure of PVAc particles. [Pg.172]

Various kinetic models on particle formation were proposed by different researchers. These may be classified as follows (1) radical absorption mechanisms by Gardon [28-34] and Fisch and Tsai [13], (2) micellar nucleation newer models by Nomura et al. [35,36] and by Hansen and Ugelstad [37], (3) homogeneous nucleation by Fistch and coworkers [13,38,39]. [Pg.193]

Particle Formation, Electron microscopy and optical microscopy are the diagnostic tools most often used to study particle formation and growth in precipitation polymerizations (7 8). However, in typical polymerizations of this type, the particle formation is normally completed in a few seconds or tens of seconds after the start of the reaction (9 ), and the physical processes which are involved are difficult to measure in a real time manner. As a result, the actual particle formation mechanism is open to a variety of interpretations and the results could fit more than one theoretical model. Barrett and Thomas (10) have presented an excellent review of the four physical processes involved in the particle formation oligomer growth in the diluent oligomer precipitation to form particle nuclei capture of oligomers by particle nuclei, and coalescence or agglomeration of primary particles. [Pg.268]

Nomura and Fujita (12), Dougherty (13-14), and Storti et al. (12). Space does not permit a review of each of these papers. This paper presents the development of a more extensive model in terms of particle formation mechanism, copolymer kinetic mechanism, applicability to intervals I, II and III, and the capability to simulate batch, semibatch, or continuous stirred tank reactors (CSTR). Our aim has been to combine into a single coherent model the best aspects of previous models together with the coagulative nucleation theory of Feeney et al. (8-9) in order to enhance our understanding of... [Pg.361]

Studies on the particulate distributions from compressed natural gas (CNG) or diesel-fuelled engines with diesel oxidation catalyst (DOC) or partial diesel particle filter (pDPF) have also been performed. The results obtained are used as data for the model, to study the particle penetration into the human respiratory tracts. As a result, the number distribution of particles in different parts of lungs can be modeled [99-101]. Understanding the particle formation and their effects and finding the methods to ehminate the formed particulates from exhaust gas contribute to a cleaner urban environment and thus to a better quality of life. [Pg.155]

A few additional points have also been raised by specific surface-science work concerning the catalytic reduction of NO. For instance, it has been widely recognized that the reaction is sensitive to the structure of the catalytic surface. It was determined that rough surfaces such as (110), or even (100), planes enhance NO dissociation over flatter (111) surfaces, and also favor N2 desorption instead of N20 production. On the other hand, NO dissociation leads to poisoning by the resulting atomic species, hence the faster reaction rates seen with medium-size vs. larger particles on model rhodium supported catalyst (the opposite appears to be true on palladium). Also, at least in the case of palladium, the formation of an isocyanate (-NCO) intermediate was identified... [Pg.90]

Ruzic [278 ] considered the theoretical aspects of the direct titration of copper in seawaters and the information this technique provides regarding copper speciation. The method is based on a graph of the ratio between the free and bound metal concentration versus the free metal concentration. The application of this method, which is based on a 1 1 complex formation model, is discussed with respect to trace metal speciation in natural waters. Procedures for interpretation of experimental results are proposed for those cases in which two types of complexes with different conditional stability constants are formed, or om which the metal is adsorbed on colloidal particles. The advantages of the method in comparison with earlier methods are presented theoretically and illustrated with some experiments on copper (II) in seawater. The limitations of the method are also discussed. [Pg.170]

The reaction of ammonia and hydrogen chloride in the gas phase has been the subject of several studies in the last 30 years [56-65], The interest in this system is mainly that it represents a simple model for proton transfer reactions, which are important for many chemical and biological processes. Moreover, in the field of atmospheric sciences, this reaction has been considered as a prototype system for investigation of particle formation from volatile species [66,67], Finally, it is the reaction chosen as a benchmark on the ability, of quantum chemical computer simulations, to realistically simulate a chemical process, its reaction path and, eventually, its kinetics. [Pg.192]

It is surprising that data on natural particles can be fitted over a range of concentrations (representative of those encountered in natural waters) on the basis of a "single-site" surface complex formation model. Apparently similar types of binding groups are predominant and of importance in these particles. [Pg.378]

In Figure 3, the simulated ultrafme aerosol concentrations (in the size ranges defined in the legend) are compared to observations. It is remarkable that, even though sulfuric acid concentrations remained quite low most of the day (never exceeding lxl07/cm3), the ultrafme particle count rose dramatically late in the morning (after -10 00). Model calculations that include the IMN mechanism reproduce this behavior, whereas classical BHN theory would have forecast no particle formation under the circumstances. The calculated ultrafme particle abundances also appear to respond to... [Pg.131]

We begin by describing the current understanding of the kinetics of polymerization of classical unsaturated monomers and macromonomers in the disperse systems. In particular, we note the importance of diffusion-controlled reactions of such monomers at high conversions, the nucleation mechanism of particle formation, and the kinetics and kinetic models for radical polymerization in disperse systems. [Pg.7]

The first mathematical model for nucleation in monomer droplets was proposed by Chamberlain et al. [25]. In this model, polymer particles were considered to be formed only upon the entry of the radicals into the monomer droplets. The rate of particle formation was expressed as a first-order entry process into monomer droplets ... [Pg.17]

This model is based on the particle formation during polymerization where the polymer particles are sterically stabilized by graft-copolymerized PEO chains on the particle surface. In the later stage the polymer particles were supposed to grow in size mainly by copolymerization of monomers occluded in the particles which may favor the substrate monomer (styrene) over the macromonomer as compared to the composition in the continuous phase. [Pg.32]

In this work, batch salting-out experiments were performed with the objective to know more about the limits and possibilities on the formation of fine particles. As model material the zwitterionic glycine was investigated within a wide range of initial supersaturations. Considering the polymorphic nature of glycine, the non-polymorphic, ionic sodium chloride was also investigated as reference system. [Pg.193]

The present review paper, therefore, refers firstly to the particle formation mechanism in emulsion polymerization, the complete understanding of which is indispensable for establishing a correct kinetic model, and then, deals with the present subject, that is, what type of reactor and operating conditions are the most suitable for a continuous emulsion polymerization process from the standpoint of increasing the volume efficiency and the stability of the reactors. [Pg.125]

Our final goal in the present paper is to devise an optimal type of the first stage reactor and its operation method which will maximize the number of polymer particles produced in continuous emulsion polymerization. For this purpose, we need a mathematical reaction model which explains particle formation and other kinetic behavior of continuous emulsion polymerization of styrene. [Pg.126]


See other pages where Particle formation model is mentioned: [Pg.924]    [Pg.61]    [Pg.193]    [Pg.208]    [Pg.92]    [Pg.446]    [Pg.524]    [Pg.407]    [Pg.128]    [Pg.199]    [Pg.12]    [Pg.304]    [Pg.372]    [Pg.67]    [Pg.126]    [Pg.406]    [Pg.617]    [Pg.41]    [Pg.133]    [Pg.389]    [Pg.404]    [Pg.404]    [Pg.262]    [Pg.160]    [Pg.199]    [Pg.200]    [Pg.259]    [Pg.248]    [Pg.126]    [Pg.127]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 ]




SEARCH



Formation modeling

Model formation

Models particles

Particle formation

Particle model craze formation

© 2024 chempedia.info