Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle-beam interface ionization

The nebulization and evaporation processes used for the particle-beam interface have closely similar parallels with atmospheric-pressure ionization (API), thermospray (TS), plasmaspray (PS), and electrospray (ES) combined inlet/ionization systems (see Chapters 8, 9, and 11). In all of these systems, a stream of liquid, usually but not necessarily from an HPLC column, is first nebulized... [Pg.79]

A stream of a liquid solution can be broken up into a spray of fine drops from which, under the action of aligned nozzles (skimmers) and vacuum regions, the solvent is removed to leave a beam of solute molecules, ready for ionization. The collimation of the initial spray into a linearly directed assembly of droplets, which become clusters and then single molecules, gives rise to the term particle beam interface. [Pg.393]

El may be used with the moving-belt and particle-beam interfaces. Cl with the moving-belt, particle-beam and direct-liquid-introduction interfaces, and FAB with the continuous-flow FAB interface. A brief description of these ionization methods will be provided here but for further details the book by Ashcroft [8] is recommended. [Pg.52]

The range of compounds from which electron ionization spectra may be obtained using the particle-beam interface is, like the moving-belt interface, extended when compared to using more conventional methods of introduction, e.g. the solids probe, or via a GC. It is therefore not unusual for specffa obtained using this type of interface not to be found in commercial libraries of mass spectra. [Pg.149]

The particle-beam interface has been developed primarily to provide El spectra from HPLC eluates but may be combined with other ionization techniques such as CL If quantitative studies are being undertaken, a detailed study of experimental conditions should be undertaken. Isotope-dilution methodology is advocated for the most accurate results. [Pg.151]

Figure 7.28 Typical particle-beam interface. After Ashcroft [524]. From A.E. Ashcroft, Ionization Methods of Organic Mass Spectrometry, The Royal Society of Chemistry, Cambridge (1997). Reproduced by permission of The Royal Society of Chemistry... Figure 7.28 Typical particle-beam interface. After Ashcroft [524]. From A.E. Ashcroft, Ionization Methods of Organic Mass Spectrometry, The Royal Society of Chemistry, Cambridge (1997). Reproduced by permission of The Royal Society of Chemistry...
Based on a new technology, particle beam enhanced liquid chromatography-mass spectrometry expands a chemist s ability to analyse a vast variety of substances. Electron impact spectra from the system are reproducible and can be searched against standard or custom libraries for positive compound identification. Chemical ionization spectra can also be produced. Simplicity is a key feature. A simple adjustment to the particle beam interface is all it takes. [Pg.55]

Cappiello, A. Famiglini, G. Lombar-dozzi. A. Massari, A. Vadala, G.G. EC Ionization of Explosives With a Microflow Rate Particle Beam Interface. J. Am. Soc. Mass Spectrom. 1996, 7, 753-758. [Pg.354]

Many interfaces have been developed to meet these demanding challenges. Some of these coupling methods, such as the moving belt or the particle beam interface, are based on the concomitant elimination of the solvent before it enters the mass spectrometer. Other methods such as direct liquid introduction (DLI) or continuous flow FAB rely on splitting the flow of the liquid that is introduced into the interface in order to obtain a flow that can be directly infused into the ionization source. However, these types of interfaces can only handle a fraction of the liquid flow from the LC. [Pg.506]

Earlier methods of ionization applied to carotenoids, including electron impact (El), chemical ionization (Cl), a particle beam interface with El or Cl, and continuous-flow fast atom bombardment (CF-FAB), have been comprehensively reviewed elsewhere (van Breemen, 1996, 1997 Pajkovic and van Breemen, 2005). These techniques have generally been replaced by softer ionization techniques like electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and more recently atmospheric pressure photoionization (APPI). It should be noted that ESI, APCI, and APPI can be used as ionization methods with a direct infusion of an analyte in solution (i.e. not interfaced with an HPLC system), or as the interface between the HPEC and the MS. In contrast, matrix-assisted laser desorption ionization (MALDI) cannot be used directly with HPEC. [Pg.127]

Over 30 years of liquid chromatography-mass spectrometry (LC-MS) research has resulted in a considerable number of different interfaces (Ch. 3.2). A variety of LC-MS interfaces have been proposed and built in the various research laboratories, and some of them have been adapted by instmment manufacturers and became commercially available. With the advent in the early 1990 s of interfaces based on atmospheric-pressure ionization (API), most of these interfaces have become obsolete. However, in order to appreciate LC-MS, one carmot simply ignore these earlier developments. This chapter is devoted to the older LC-MS interfaces, which is certainly important in understanding the histoiy and development of LC-MS. Attention is paid to principles, instrumentation, and application of the capillary inlet, pneumatic vacuum nebulizers, the moving-belt interface, direct liquid introduction, continuous-flow fast-atom bombardment interfaces, thermospray, and the particle-beam interface. More elaborate discussions on these interfaces can be found in previous editions of this book. [Pg.73]

In a particle-beam interface (PBI), the column effluent is nebulized, either pneumatically or by TSP nebulization, into a near atmospheric-pressure desolvation chamber, which is connected to a momentum separator, where the high molecular-mass analytes are preferentially transferred to the MS ion source, while the low molecular-mass solvent molecules are efficiently pumped away. The analyte molecules are transferred in small particles to a conventional EI/CI ion source, where they disintegrate in evaporative collisions by hitting a heated target, e.g., the ion source wall. The released molecules are ionized by El or conventional CL... [Pg.92]

Many papers on the LC-MS analysis of pesticides and related compounds deal with the characterization of interface and ionization performance, the improvement of detection limits by variation of experimental conditions, and the information content of the mass spectra. As far as ESI and APCI ate concerned, this type of information is reviewed for various pesticide classes in this section (see Ch. 4.7.4 for results with thermospray and Ch. 5.6.1 with particle-beam interfacing). [Pg.180]

Delepine, B. Sanders, P. Determination of chloramphenicol in muscle using a particle beam interface for combining Uquid-chromatography with negative-ion chemical ionization mass-spectrometry. J. Chromatogr. 1992, 582, 113-121. [Pg.550]

Nowadays, interfacing of a liquid chromatograph or a capillary electrophoresis instrument with a mass spectrometer is used too, although technically more complex. The presence of water in elution solvents is an undesirable compound for the mass spectrometer. With HPLC, the use of micro-columns is desirable, to have very low flow rates. They are also well-suited with different ionization techniques for the analysis of high molecular-weight compounds. A rather old device, whose sensitivity is now judged to be very poor, is the particle beam interface... [Pg.391]

A comparison of various LC-MS systems for the analysis of complex mixtures of PAHs showed that (1) the moving belt interface was mechanically awkward and is compatible only with a limited range of mobile phases, (2) particle-beam interface had low sensitivity, and the response was nonlinear, (3) a heated nebulizer interface that uses atmospheric pressure chemical ionization (APCI) was the preferred procedure (Anacleto et al. 1995). [Pg.82]


See other pages where Particle-beam interface ionization is mentioned: [Pg.548]    [Pg.403]    [Pg.765]    [Pg.494]    [Pg.135]    [Pg.378]    [Pg.720]    [Pg.721]    [Pg.213]    [Pg.510]    [Pg.545]    [Pg.1002]    [Pg.1093]    [Pg.1325]    [Pg.504]    [Pg.135]    [Pg.286]    [Pg.302]    [Pg.61]    [Pg.361]    [Pg.1543]    [Pg.23]    [Pg.32]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Interfaces particle-beam interface

Ionized particles

Ionizing particles

Particle beam

Particle beam ionization

Particle-beam interface

© 2024 chempedia.info