Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Parameter estimations, experimental

Local sensitivity information has numerous applications in uncertainty analysis, parameter estimation, experimental design, mechanism investigation and mechanism reduction. Uncertainty analysis, a quantitative study of the effect of parameter uncertainties on the solution of models, is... [Pg.320]

Figure 2.30. Iterative procedure for parameter estimation, experimentation. Figure 2.30. Iterative procedure for parameter estimation, experimentation.
In the best strategy of experimentation for model discrimination and parameter estimation, experimental studies are started by determining the Pt dependence of (-B.4)o, which will indicate the functional form of the rate expression. Secondly, pure feed experiments are conducted both at space times within the initial rates region and at longer space times to determine the reaction rate constant and adsorption equilibrium coefficients of reactants. Thirdly, mixed feed experiments carried out in the initial rates region and at longer space times are used in the calculation of adsorption equilibrium coefficients of products [17]. [Pg.29]

Figure 4-14. Predicted liquid-liquid equilibria for a typical type-II system shows good agreement with experimental data, using parameters estimated from binary data alone. Figure 4-14. Predicted liquid-liquid equilibria for a typical type-II system shows good agreement with experimental data, using parameters estimated from binary data alone.
While many methods for parameter estimation have been proposed, experience has shown some to be more effective than others. Since most phenomenological models are nonlinear in their adjustable parameters, the best estimates of these parameters can be obtained from a formalized method which properly treats the statistical behavior of the errors associated with all experimental observations. For reliable process-design calculations, we require not only estimates of the parameters but also a measure of the errors in the parameters and an indication of the accuracy of the data. [Pg.96]

Unfortunately, many commonly used methods for parameter estimation give only estimates for the parameters and no measures of their uncertainty. This is usually accomplished by calculation of the dependent variable at each experimental point, summation of the squared differences between the calculated and measured values, and adjustment of parameters to minimize this sum. Such methods routinely ignore errors in the measured independent variables. For example, in vapor-liquid equilibrium data reduction, errors in the liquid-phase mole fraction and temperature measurements are often assumed to be absent. The total pressure is calculated as a function of the estimated parameters, the measured temperature, and the measured liquid-phase mole fraction. [Pg.97]

The primary purpose for expressing experimental data through model equations is to obtain a representation that can be used confidently for systematic interpolations and extrapolations, especially to multicomponent systems. The confidence placed in the calculations depends on the confidence placed in the data and in the model. Therefore, the method of parameter estimation should also provide measures of reliability for the calculated results. This reliability depends on the uncertainties in the parameters, which, with the statistical method of data reduction used here, are estimated from the parameter variance-covariance matrix. This matrix is obtained as a last step in the iterative calculation of the parameters. [Pg.102]

In the maximum-likelihood method used here, the "true" value of each measured variable is also found in the course of parameter estimation. The differences between these "true" values and the corresponding experimentally measured values are the residuals (also called deviations). When there are many data points, the residuals can be analyzed by standard statistical methods (Draper and Smith, 1966). If, however, there are only a few data points, examination of the residuals for trends, when plotted versus other system variables, may provide valuable information. Often these plots can indicate at a glance excessive experimental error, systematic error, or "lack of fit." Data points which are obviously bad can also be readily detected. If the model is suitable and if there are no systematic errors, such a plot shows the residuals randomly distributed with zero means. This behavior is shown in Figure 3 for the ethyl-acetate-n-propanol data of Murti and Van Winkle (1958), fitted with the van Laar equation. [Pg.105]

The aim of the parameter estimation is to deduee the growth rate G, nuelea-tion rate agglomeration kernel /3aggi and disruption kernel /3disr from the experimental CSD. The CSD is deseribed mathematieally by the population balanee (Randolph and Larson, 1988)... [Pg.175]

When estimates of k°, k, k", Ky, and K2 have been obtained, a calculated pH-rate curve is developed with Eq. (6-80). If the experimental points follow closely the calculated curve, it may be concluded that the data are consistent with the assumed rate equation. The constants may be considered adjustable parameters that are modified to achieve the best possible fit, and one approach is to use these initial parameter estimates in an iterative nonlinear regression program. The dissociation constants K and K2 derived from kinetic data should be in reasonable agreement with the dissociation constants obtained (under the same experimental conditions) by other means. [Pg.290]

Experimental polymer rheology data obtained in a capillary rheometer at different temperatures is used to determine the unknown coefficients in Equations 11 - 12. Multiple linear regression is used for parameter estimation. The values of these coefficients for three different polymers is shown in Table I. The polymer rheology is shown in Figures 2 - 4. [Pg.137]

A general method has been developed for the estimation of model parameters from experimental observations when the model relating the parameters and input variables to the output responses is a Monte Carlo simulation. The method provides point estimates as well as joint probability regions of the parameters. In comparison to methods based on analytical models, this approach can prove to be more flexible and gives the investigator a more quantitative insight into the effects of parameter values on the model. The parameter estimation technique has been applied to three examples in polymer science, all of which concern sequence distributions in polymer chains. The first is the estimation of binary reactivity ratios for the terminal or Mayo-Lewis copolymerization model from both composition and sequence distribution data. Next a procedure for discriminating between the penultimate and the terminal copolymerization models on the basis of sequence distribution data is described. Finally, the estimation of a parameter required to model the epimerization of isotactic polystyrene is discussed. [Pg.282]

Topaz was used to calculate the time response of the model to step changes in the heater output values. One of the advantages of mathematical simulation over experimentation is the ease of starting the experiment from an initial steady state. The parameter estimation routines to follow require a value for the initial state of the system, and it is often difficult to hold the extruder conditions constant long enough to approach steady state and be assured that the temperature gradients within the barrel are known. The values from the Topaz simulation, were used as data for fitting a reduced order model of the dynamic system. [Pg.496]

At a later stage, the basic model was extended to comprise several organic substrates. An example of the data fitting is provided by Figure 8.11, which shows a very good description of the data. The parameter estimation statistics (errors of the parameters and correlations of the parameters) were on an acceptable level. The model gave a logical description of aU the experimentally recorded phenomena. [Pg.183]

Once a model has been fitted to the available data and parameter estimates have been obtained, two further possible questions that the experimenter may pose are How important is a single parameter in modifying the prediction of a model in a certain region of independent variable space, say at a certain point in time and, moreover. How important is the numerical value of a specific observation in determining the estimated value of a particular parameter Although both questions fall within the domain of sensitivity analysis, in the following we shall address the first. The second question is addressed in Section 3.6 on optimal design. [Pg.86]

The standard way to proceed would be to fit the model to the data relative to each experimental unit, one at a time, thus obtaining a sample of parameter estimates, one for each experimental tumor observed. The sample mean and dispersion of these estimates would then constitute our estimate of the population mean and dispersion. By the same token, we could find the mean and dispersion in the Control and Treated subsamples. [Pg.96]

Classic parameter estimation techniques involve using experimental data to estimate all parameters at once. This allows an estimate of central tendency and a confidence interval for each parameter, but it also allows determination of a matrix of covariances between parameters. To determine parameters and confidence intervals at some level, the requirements for data increase more than proportionally with the number of parameters in the model. Above some number of parameters, simultaneous estimation becomes impractical, and the experiments required to generate the data become impossible or unethical. For models at this level of complexity parameters and covariances can be estimated for each subsection of the model. This assumes that the covariance between parameters in different subsections is zero. This is unsatisfactory to some practitioners, and this (and the complexity of such models and the difficulty and cost of building them) has been a criticism of highly parameterized PBPK and PBPD models. An alternate view assumes that decisions will be made that should be informed by as much information about the system as possible, that the assumption of zero covariance between parameters in differ-... [Pg.543]

The kinetic parameters estimated by the experimental data obtained frmn the honeycomb reactor along with the packed bed flow reactor as listed in Table 1 reveal that all the kinetic parameters estimated from both reactors are similar to each other. This indicates that the honeycomb reactor model developed in the present study can directly employ intrinsic kinetic parameters estimated from the kinetic study over the packed-bed flow reactor. It will significantly reduce the efibrt for predicting the performance of monolith and estimating the parameters for the design of the commercial SCR reactor along with the reaction kinetics. [Pg.447]

Fig. 1. Prediction of the model for 10 and 100 CPSI honeycomb reactors extruded with the ViOs/sulfated Xi02 catalyst. (—, prediction with the parameters estimated from the experimental data over a packed-bed flow reactor —, prediction with the parameters estimated from the experimental data over a honeycomb reactor). Fig. 1. Prediction of the model for 10 and 100 CPSI honeycomb reactors extruded with the ViOs/sulfated Xi02 catalyst. (—, prediction with the parameters estimated from the experimental data over a packed-bed flow reactor —, prediction with the parameters estimated from the experimental data over a honeycomb reactor).
The experimental results imply that the main reaction (eq. 1) is an equilibrium reaction and first order in nitrogen monoxide and iron chelate. The equilibrium constants at various temperatures were determined by modeling the experimental NO absorption profile using the penetration theory for mass transfer. Parameter estimation using well established numerical methods (Newton-Raphson) allowed detrxmination of the equilibrium constant (Fig. 1) as well as the ratio of the diffusion coefficients of Fe"(EDTA) andNO[3]. [Pg.794]

We determined the reaction parameters using the optimal parameter estimation technique with the experimentally obtained copolymer yield and norbomene composition data. Based on the literature report, we assume that k = 3 [5]. Fig. 1 shows that the estimated rate constant values depend on the norbomene block length. Note that the reaction rate constant... [Pg.846]

Parameter estimation. Integral reactor behavior was used for the interpretation of the experimental data, using N2O conversion levels up to 70%. The temperature dependency of the rate parameters was expressed in the Arrhenius form. The apparent rate parameters have been estimated by nonlinear least-squares methods, minimizing the sum of squares of the residual N2O conversion. Transport limitations could be neglected. [Pg.643]

A survey of the mathematical models for typical chemical reactors and reactions shows that several hydrodynamic and transfer coefficients (model parameters) must be known to simulate reactor behaviour. These model parameters are listed in Table 5.4-6 (see also Table 5.4-1 in Section 5.4.1). Regions of interfacial surface area for various gas-liquid reactors are shown in Fig. 5.4-15. Many correlations for transfer coefficients have been published in the literature (see the list of books and review papers at the beginning of this section). The coefficients can be evaluated from those correlations within an average accuracy of about 25%. This is usually sufficient for modelling of chemical reactors. Mathematical models of reactors arc often more sensitive to kinetic parameters. Experimental methods and procedures for parameters estimation are discussed in the subsequent section. [Pg.288]

Drawing straight lines through data points is a slightly arbitrary procedure. The slope of the straight line does not depend very much on this arbitrariness but the value of the intercept usually depends very much on it. Consequently, the value of the kinetic parameter related to the intercept will be estimated with the accuracy of the eyes capability of finding the best fit between experimental points and those lying on the line drawn. An objective method of parameter estimation consist in evaluation of the minimum of the function ... [Pg.539]

Statistical testing of model adequacy and significance of parameter estimates is a very important part of kinetic modelling. Only those models with a positive evaluation in statistical analysis should be applied in reactor scale-up. The statistical analysis presented below is restricted to linear regression and normal or Gaussian distribution of experimental errors. If the experimental error has a zero mean, constant variance and is independently distributed, its variance can be evaluated by dividing SSres by the number of degrees of freedom, i.e. [Pg.545]

Model parameters are usually determined from expterimental data. In doing this, sensitivity analysis is valuable in identifying the experimental conditions that are best for the estimation of a particular model parameter. In advanced software packages for parameter estimation, such as SIMUSOLV, sensitivity analysis is provided. The resulting iterative procedure for determining model parameter values is shown in Fig. 2.39. [Pg.114]

The experimental data are in a separate data file together with the PREPARE statement and the initial titration value. Here the data point at T=10 was assumed to be erroneous because of mishandling and was not included into the parameter estimation. [Pg.120]


See other pages where Parameter estimations, experimental is mentioned: [Pg.97]    [Pg.99]    [Pg.170]    [Pg.2564]    [Pg.20]    [Pg.163]    [Pg.190]    [Pg.306]    [Pg.309]    [Pg.343]    [Pg.490]    [Pg.490]    [Pg.677]    [Pg.306]    [Pg.307]    [Pg.308]    [Pg.312]    [Pg.341]    [Pg.579]    [Pg.8]   


SEARCH



Estimation of Kinetic Parameters from Experimental Data

Experimental Design and Parameter Estimation

Experimental Methods for Parameter Estimations

Experimental parameters

Parameter Estimation from Experimental Data and Finer Scale Models

Parameter estimation

Parameter estimations, experimental bubble size

Parameter estimations, experimental interfacial area

Parameter estimations, experimental methods

Sequential Experimental Design for Precise Parameter Estimation

© 2024 chempedia.info