Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PALLADIUM See Chapter

Detection and Estimation of Palladium.—See Chapter X. 1 Lebeau and Jolibois, Qompt. rend., 1908,146, 1028. [Pg.207]

The palladium-catalyzed oxidation of ethylene to acetaldehyde, often called the Wacker process after the company that developed it, is one of the oldest and best known reactions of palladium (see Chapter 9). The oxidation is usually carried out in water with oxygen as the oxidant in the presence of cupric chloride, which catalyzes the oxidation of Pd(0) formed in the ethylene oxidation back to the active state [1]. [Pg.173]

Supported palladium catalysts for fine chemicals synthesis are generally based on metal particles. Nevertheless, a few examples are reported of the use of supported complexes as catalysts for the Heck reaction (see Chapter 9.6). Nearly all the possible immobilization methods have been tested for this reaction. [Pg.463]

The palladium phthalocyanine (67), developed by Mitsui Toatsu and Ciba58,59 is one of the leading phthalocyanine infrared absorbers for CD-R (Compact Disk-Rewritable) (see Chapter 9.13). Bulky groups (R) reduce undesirable molecular aggregation, which lowers the extinction coefficient and hence the absorptivity and reflectivity. Partial bromination allows fine tuning of the film absorbance and improves reflectivity. The palladium atom influences the position of the absorption band, the photostability and the efficiency of the radiationless transition from the excited state.58 It is marketed by Ciba as Supergreen.60... [Pg.574]

Chlorostannate ionic liquids have been used in hydroformylation reactions [23], Acidic [bmimjCl-SnCb and [l-butyl-4-methylpyridinium]Cl-SnCl2 were prepared from mixing the respective [cation]+ Cl with tin(II)chloride in a ratio of 100 104, much in the same way that the chloroaluminates are made (see Chapter 4). Both these chlorostannate ionic liquids melt below 25 °C. Addition of Pd(PPh3)2Cl2 to these chlorostannate ionic liquids leads to a reaction medium that catalyses the hydroformylation of alkenes such as methyl-3-pentenoate as shown in Scheme 8.9. The ionic liquid-palladium catalyst solution is more effective than the corresponding homogeneous dichloromethane-palladium catalyst solution. The product was readily separated from the ionic liquid by distillation under vacuum. This is an important reaction as it provides a clean route to adipic acid. [Pg.172]

Since the hydride based isomerisation is such a facile reaction it often occurs even when it is not desired. Thus, if hydrides play a role in the catalytic cycle and alkenes are present or formed during the reaction, isomerisation may represent an undesired side reaction. For instance in the Heck reaction (see Chapter 13) an alkene and a palladium hydride are formed and thus, if the alkene can isomerise, this may happen at the end of the cycle as a secondary process. [Pg.102]

In Chapter 8 we will discuss the hydroformylation of propene using rhodium catalysts. Rhodium is most suited for the hydroformylation of terminal alkenes, as we shall discuss later. In older plants cobalt is still used for the hydroformylation of propene, but the most economic route for propene hydroformylation is the Ruhrchemie/Rhone-Poulenc process using two-phase catalysis with rhodium catalysts. For higher alkenes, cobalt is still the preferred catalyst, although recently major improvements on rhodium (see Chapter 8) and palladium catalysts have been reported [3],... [Pg.128]

Aqueous palladium-catalyzed Sonogashira coupling reactions were also applied for the preparation of polymers (see Chapter 7). [Pg.176]

Sadly, there are a few exceptions to the tidy picture presented by the Aufbau filling diagram. Copper, chromium, and palladium are notable examples (see Chapter 22 for details). Without going into teeth-grinding detail, these exceptional electron configurations arise from situations where electrons get transferred from their proper, Aufbau-filled orbitals to create half-filled or entirely filled sets of d orbitals these half- and entirely filled states cire more stable than the states produced by pure Aufbau-based filling. [Pg.52]

The presence of a quaternary carbon atom at the 4 position of the piperidine in the form of a spiro substituent seems to enhance potency. The starting piperidin is the product from the formal additon of cyanide and aniline to the 4 position of A-benzyl-4-piperidone (see Chapter 7 [28-3] for preparation). Reaction of that with formamide serves to form the spiro-imidazoline ring (21-4). The benzyl protecting group is then removed by hydrogenolysis over palladium to give the secondary... [Pg.334]

A structurally unusual 3-blocker that uses a second molecule of itself as the substituent on nitrogen is included here in spite of the ubiquity of this class of compounds. Exhaustive hydrogenation of the chromone (13-1) leads to a reduction of both the double bond and the carbonyl group, as in the case of (11-2). The car-boxyhc acid is then reduced to an aldehyde (13-2) by means of diisobutylaluminum hydride. Reaction of that intermediate with the ylide from trimethylsulfonium iodide gives the oxirane (13-3) via the addition-displacement process discussed earlier (see Chapters 3 and 8). Treatment of an excess of that epoxide with benzylamine leads to the addition of two equivalents of that compound with each basic nitrogen (13-4). The product is then debenzylated by catalytic reduction over palladium to afford nebivolol (13-5) [16]. The presence of four chiral centers in the product predicts the existence of 16 chiral pairs. [Pg.438]

An acyl-palladium complex might undergo a series of follow up reactions. Subsequent transmetalation and reductive elimination lead to the formation of a carbonyl compound. This process is also coined carbonylative coupling, referring to the cross-coupling reaction, which would take place in the absence of carbon monoxide under similar conditions (for more details see Chapter 2.4.). [Pg.11]

Coupling of aryl halides with alkenyl stannanes promoted through palladium metal catalysis, otherwise known as the Stille coupling, has many applications,22 including solid-phase variants (see Chapter 2).3-5 One of these is featured in Nicolaou and co-workers solid-phase synthesis of (5)-zearalenone wherein a resin-bound alkenylstannane undergoes a Stille cycli-... [Pg.253]

Microwave-promoted palladium-catalysed processes have found wide general application (see Chapter 2). A Larock-type heteroannulation of an iodoaniline and an internal alkyne has been employed in the synthesis of substituted indoles9 (Scheme 3.7). The microwave conditions were carefully optimised using a focused microwave reactor. Application of microwave heating provided clear advantages in reaction rate and yield over conventional thermal conditions. It is interesting to note that fixed microwave power input provided improved yields over constant temperature conditions (variable microwave power input). This chemistry was successfully extended to a solid-phase format (Rink amide resin)10. [Pg.47]

There are different methods to cleave benzyl ether bonds. The most common one is hydrogenolysis with palladium on carbon or platinum as catalysts under H2 atmosphere. The standard solvents are ethanol or ethyl acetate. Pd is the preferred and milder one, because the use of Pt at any rate results in aromatic ring hydrogenation. Also a number of methods have been developed in which hydrogen is generated in situ, e. g. from cyclo-hexene, -hexadiene or formic acid (see Chapter 7). [Pg.148]

The surface composition and availability of certain adsorption sites are not the only factors that determine how CO binds to the surface rather, interactions between CO and co-adsorbed molecules also play an important part. The RAIRS study conducted by Raval et al. [35] showed how NO forces CO to leave its favored binding site on palladium (see Fig. 8.10). When only CO is present, it occupies the twofold bridge site, as the infrared frequency of about 1930 cm-1 indicates. However, if NO is co-adsorbed, then CO leaves the twofold site and ultimately appears in a linear mode with a frequency of approximately 2070 cm-1. Raval and colleagues [35] attributed the move of adsorbed CO to the top sites to the electrostatic repulsion between negatively charged NO and CO, which decreases the back-donation of electrons from the substrate into the In orbitals of CO. In this interpretation, NO has the opposite effect that a potassium promoter would have (see Chapter 9 and the Appendix). [Pg.234]

The application of this approach to phosphorus dendrimers is readily applied11111 to the creation of a tetrahedral series via the use of a four-directional silane core (Scheme 4.26). The treatment of tetravinylsilane (78) with phosphine 98 quantitatively gave the desired small dendrimer 99, which can be transformed to the tetrakis(square planar palladium) complex see Chapter 8. [Pg.76]

The hydrogenolysis of N-N linkages is involved in the hydrogenation of such compounds as hydrazines, azines, hydrazones, azo compounds, or azides. Usually, palladium, platinum, and nickel catalysts are used for the hydrogenolysis of these compounds (see Chapters 8 and 9). Palladium catalysts are known to be particularly effective for the hydrogenolysis of aromatic hydrazo compounds.317... [Pg.652]

Alternatively, 3-picoline is produced by vapor phase cyclization of 2-methyl-pentane-1,5-diamine (Fig. 2.25) over, for example, H-ZSM-5 followed by palladium-catalyzed dehydrogenation [78]. This diamine is a by-product of the manufacture of hexamethylenediamine, the raw material for nylon 6,6, and these two reactions are key steps in the Lonza process for nicotinamide production (see Chapter 1) [79]. [Pg.70]

Functionalised ionic liquids based on cations other than imidazolium have also been developed. For example, pyridinium cations functionalised with pentafluorosulfanyl[89] or alkyl-nitrile groups1901 have been prepared as cheaper alternatives to their imidazolium-based counterparts (see Figure 2.8). The latter have been evaluated in palladium catalysed C-C cross coupling reactions and improved catalyst retention and stability were observed in the nitrile-functionalised ionic liquid compared to the simple alkyl-analogue. Consequently, the nitrile-functionalised ionic liquid solution can be reused repeatedly without significant decrease in activity (see Chapter 6 for further information). [Pg.32]


See other pages where PALLADIUM See Chapter is mentioned: [Pg.86]    [Pg.525]    [Pg.86]    [Pg.86]    [Pg.525]    [Pg.86]    [Pg.353]    [Pg.322]    [Pg.563]    [Pg.359]    [Pg.229]    [Pg.304]    [Pg.70]    [Pg.453]    [Pg.236]    [Pg.111]    [Pg.146]    [Pg.464]    [Pg.233]    [Pg.38]    [Pg.155]    [Pg.136]    [Pg.323]    [Pg.214]    [Pg.289]    [Pg.223]    [Pg.171]    [Pg.221]    [Pg.340]    [Pg.432]    [Pg.229]    [Pg.265]   


SEARCH



© 2024 chempedia.info