Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium arenes

It has been shown that the use of ionic liquids may be beneficial in aromatic fluorinations in protic solvents." Aryl fluorides may also be obtained using a copper-catalysed halide exchange reaction. The evidence suggests a redox Cu(I)/Cu(III) catalytic cycle involving oxidative addition of aryl halide at the copper(I) centre followed by halide exchange and reductive elimination." A mechanistic investigation of the palladium-catalysed conversion of aryl triflates to fluorides has shown that C-F reductive elimination from the palladium—arene complex does not occur when the aryl group is electron rich and requires in situ modification of the catalyst." ... [Pg.237]

NMR signals of the amino acid ligand that are induced by the ring current of the diamine ligand" ". From the temperature dependence of the stability constants of a number of ternary palladium complexes involving dipeptides and aromatic amines, the arene - arene interaction enthalpies and entropies have been determined" ". It turned out that the interaction is generally enthalpy-driven and counteracted by entropy. Yamauchi et al. hold a charge transfer interaction responsible for this effect. [Pg.89]

The above reagents (ok the safrole and H2O aren t reagent) are weighed or measured accordingly. The flask is securely clamped into place on the magnetic stirrer. Add the DMF and H2O. Start stirring, and then slowly add the palladium chloride and cuprous chloride. If you add the powders first then the liquids you ll have problems with the stir bar finding a place to spin. [Pg.66]

There are reports of an increasing number of palladium-assisted reactions, in some of which the palladium has a catalytic function. Thus furan and thiophene undergo facile palladium-assisted alkenylation giving 2-substituted products. Benzo[6 Jfuran and TV- acetyl-indole yield cyclization products, dibenzofurans and carbazoles respectively, in addition to alkenylated products (8UOC851). The arylation of pyrroles can be effected by treatment with palladium acetate and an arene (Scheme 86) (81CC254). [Pg.83]

Aryl tetrazolyl ethers (519) are reduced by palladium on charcoal to give the arene and the tetrazolinone (520) (77AHC(2D323) this reaction is used for the removal of phenolic functionality. [Pg.102]

ArSnRs, and with arylmercury compounds. Aryl triflates react with arylbo-ronic acids ArB(OH)2, or with organoboranes, in the presence of a palladium catalyst, to give the arene in what is called Suzuki couplingCyclopropyl groups can be attached to aromatic rings by this reaction. Even hindered boronic acids give good yields of the coupled product. [Pg.868]

Over the last decade, the chemistry of the carbon-carbon triple bond has experienced a vigorous resurgence [1]. Whereas construction of alkyne-con-taining systems had previously been a laborious process, the advent of new synthetic methodology based on organotransition metal complexes has revolutionized the field [2]. Specifically, palladium-catalyzed cross-coupling reactions between alkyne sp-carbon atoms and sp -carbon atoms of arenes and alkenes have allowed for rapid assembly of relatively complex structures [3]. In particular, the preparation of alkyne-rich macrocycles, the subject of this report, has benefited enormously from these recent advances. For the purpose of this review, we Emit the discussion to cychc systems which contain benzene and acetylene moieties only, henceforth referred to as phenylacetylene and phenyldiacetylene macrocycles (PAMs and PDMs, respectively). Not only have a wide... [Pg.82]

Fagnou and co-workers reported on the use of a palladium source in the presence of different phosphine ligands for the intramolecular direct arylation reaction of arenes with bromides [56]. Later, they discovered that new conditions employing palladium complex 27 promoted the direct arylation of a broad range of aryl chlorides to form six- and five-membered ring biaryls including different functionalities as ether, amine, amide and alkyl (Scheme 7.11) [57]. [Pg.201]

Another recent development in the field of palladium-catalyzed reactions with alkynes is a novel multicomponent approach devised by the Lee group. Starting from a-bromovinyl arenes and propargyl bromides, the assembly ofeight-membered car-bocycles can be realized via a cross-coupling/[4+4] cycloaddition reaction. The authors also presented the combination of a cross-coupling and homo [4+2], hetero [4+2], hetero [4+4] or [4+4+1] annulation leading to various cyclic products [147]. [Pg.411]

The arylation of electron-rich arenes, such as azulene (55)206 and heteroarenes, has been sporadically described. Under similar conditions phenols undergo arylation, which is preferably directed at the ort/zo-positions, probably due to the involvement of palladium phenolate intermediates.188,207 Polysubstitution occurs readily.208 The para-position can be attacked only with the sterically hindered 2,6-di-t-butylphenol.209 Similar ortho-diarylation of arenes bearing carbonyl groups (acetophenone, anthrone, benzanilide, etc.) shows that the or//zo-di reeling effect of the substituent is more important than its other electronic effects.189... [Pg.325]

Yordanov, A. T. Mague, J. T. Roundhill, D. M. Solvent extraction of divalent palladium and platinum from aqueous solutions of their chloro complexes using an N,N- dimethyldithiocarbamoylethoxy substituted calix 4 arene. Inorg. Chim. Acta 1995, 240, 441 146. [Pg.806]

The synthesis of the second Stille coupling partner 34 was efficiently achieved in three steps. First, 2-bromojuglone (36) [28] was protected as its methoxymethyl ether (46, Scheme 3.7). The quinone was reduced using sodium thiosulfate, and the resulting hydroquinone was protected with methoxymethyl chloride to afford the arene 47. Finally, stannylation using tetrakis-(triphenylphosphine)palladium and hexabutylditin [29] afforded the cross-coupling partner 34 in high yield. [Pg.48]

Organometallic complexes of copper, nickel, and palladium have been used in indole syntheses from arenes. Most of the reactions proceed under relatively mild conditions and in some cases give rise to formation of the less common 2-substituted compounds.68 Good yields of such 2-substituted derivatives are formed in reactions of o-iodoarylamines with cuprous acetylides in dimethylformamide (Scheme 41 ).69 The efficiency of this type of... [Pg.339]

The indazoline products can also be made directly from the palladium complexes 78 by heating them with the isonitrile in toluene at 120CC.162 They are also formed in dicobalt octacarbonyl-catalyzed reactions of azo-arenes with isocyanides but in this case an alternative reaction pathway leading to indazolo[2,l- ]indazoles (79) is observed (Scheme 96).163 Products of the latter type are formed from sterically hindered isocyanides hence it is likely that in these cases a double metallation is favored over isocyanide insertion into a monometallated species (Scheme 97). [Pg.361]

Additional publications from Sanford et al. describe the full exploration of palladium-catalyzed chelate-directed chlorination, bromination, and iodination of arenes using N-halosuccinimides as the terminal oxidant <06T11483>. Moreover, an electrophilic fluorination of dihalopyridine-4-carboxaldehydes was reported by Shin et al. <06JFC755>. This was accomplished via transmetalation of the bromo derivative, followed by treatment with A-fluorobenzenesulfinimide as the source of electrophilic fluorine. [Pg.320]

Fujiwara s research group have developed an array of catalytic arene functionalizations employing electrophilic palladium complexes (Equation (65)).66... [Pg.123]

A palladium-mediated Stille-C-H functionalization process was recently disclosed. Deuteration of the fused arene led to 92% D-incorporation in the vinylsilane product, suggesting a Pd-migration process (Equation (159)).133... [Pg.149]

Dinuclear palladium complexes catalyze m-hydroarylation of alkynes with arenes.56 The reaction of 3-hexyne with benzene in the presence of a dinulear palladium complex Pd2R2(M-OH)(//-dpfam) [dpfam = j/V,Ar -bis[2-(diphenyl-phosphino)phenyl]formamidinate, R=/>-Tol] and tri(/z-butyl)borane at 100 °C for 4h affords ( )-3-phenyl-3-hexene quantitatively (Equation (53)). The hydroarylation of 3-hexyne with monosubstituted benzenes ( )-3-aryl-3-hexenes with a 2 1 ratio of the meta- and ra -isomers. This regioselectivity is different from that of the hydroarylation of diphenylacetylene catalyzed by Rh4(GO)12.57... [Pg.225]

In the palladium-catalyzed coupling reactions of arenes with alkenes, the cr-arylpalladium complexes react with CO to give aromatic acids in AcOH, as shown in Scheme u 97>97a 97c This carboxylation reaction of arenes with CO proceeds catalytically with respect to Pd at room temperature under atmospheric pressure of CO, when K2S2O8 is added as an oxidant and TFA is employed as a solvent. [Pg.232]

Recently, synthesis of aryl ketones by a combination of palladium-catalyzed C-H activation of arenes and intermolecular carbopalladation of nitriles has been reported (Equation (119)).474... [Pg.469]

Palladium chemistry involving heterocycles has its unique characteristics stemming from the heterocycles inherently different structural and electronic properties in comparison to the corresponding carbocyclic aryl compounds. One example illustrating the striking difference in reactivity between a heteroarene and a carbocyclic arene is the heteroaryl Heck reaction (vide infra, see Section 1.4). We define a heteroaryl Heck reaction as an intermolecular or an intramolecular Heck reaction occurring onto a heteroaryl recipient. Intermolecular Heck reactions of carbocyclic arenes as the recipients are rare [12a-d], whereas heterocycles including thiophenes, furans, thiazoles, oxazoles, imidazoles, pyrroles and indoles, etc. are excellent substrates. For instance, the heteroaryl Heck reaction of 2-chloro-3,6-diethylpyrazine (1) and benzoxazole occurred at the C(2) position of benzoxazole to elaborate pyrazinylbenzoxazole 2 [12e]. [Pg.1]

Condensation of aryl halides with various active methylene compounds is readily promoted by catalytic action of palladium to give the corresponding arene derivatives containing a functionalized ethyl group [7]. Yamanaka et al. extended this chemistry to haloazoles including oxazoles, thiazoles and imidazoles [8]. Thus, in the presence of Pd(Ph3P)4,2-chlorooxazole was refluxed with phenylsulfonylacetonitrile and NaH to form 4,5-diphenyl-a-phenylsulfonyl-2-oxazoloacetonitrile, which existed predominantly as its enamine tautomer. In a similar fashion, 4-bromooxazole and 5-bromooxazole also were condensed with phenylsulfonylacetonitrile under the same conditions. [Pg.324]

Palladium chemistry of heterocycles has its idiosyncrasies stemming from their different structural properties from the corresponding carbocyclic aryl compounds. Even activated chloroheterocycles are sufficiently reactive to undergo Pd-catalyzed reactions. As a consequence of a and y activation of heteroaryl halides, Pd-catalyzed chemistry may take place regioselectively at the activated positions, a phenomenon rarely seen in carbocyclic aryl halides. In addition, another salient peculiarity in palladium chemistry of heterocycles is the so-called heteroaryl Heck reaction . For instance, while intermolecular palladium-catalyzed arylations of carbocyclic arenes are rare, palladium-catalyzed arylations of azoles and many other heterocycles readily take place. Therefore, the principal aim of this book is to highlight important palladium-mediated reactions of heterocycles with emphasis on the unique characteristics of individual heterocycles. [Pg.416]


See other pages where Palladium arenes is mentioned: [Pg.339]    [Pg.335]    [Pg.339]    [Pg.335]    [Pg.395]    [Pg.305]    [Pg.156]    [Pg.208]    [Pg.193]    [Pg.102]    [Pg.559]    [Pg.559]    [Pg.644]    [Pg.444]    [Pg.114]    [Pg.285]    [Pg.372]    [Pg.373]    [Pg.278]    [Pg.187]    [Pg.117]    [Pg.225]    [Pg.511]    [Pg.710]    [Pg.820]    [Pg.467]    [Pg.469]    [Pg.161]    [Pg.416]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Alkenes arenes, palladium®) acetate

Arenes Palladium chloride

Arenes palladium catalysts

Arenes palladium complexes

Arenes palladium-catalyzed arylations

Arenes palladium®) acetate

Arenes, bromocarbonylation palladium catalysts

Metal-arene complexes palladium

Palladium acetate arene-alkene reaction

Palladium arene containing

Palladium arene olefination

Palladium catalysis of arenes

Palladium complexes arene

Palladium-Catalyzed Carbonylative Oxidation of Arenes, Alkanes, and Other Hydrocarbons

Palladium-Catalyzed Cascade Carbopalladation Termination with Alkenes, Arenes, and Related rr-Bond Systems

Palladium-catalysed arylation of arenes with aryl halides and sulfonates

Yuzo Fujiwara and Chengguo Jia .2.2 Palladium-Promoted Alkene-Arene Coupling via C—H Activation

© 2024 chempedia.info