Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C-P Bonds

Phosphonothioate Esters of Phenols. Phosphonates with a single P—C bond are highly toxic and persistent iasecticides but have not been used extensively because some compounds produce delayed neuropathy leading to irreversible paralysis ia higher animals, including humans. Such compounds specifically inhibit an enzyme, neurotoxic esterase, that is responsible for the growth and maintenance of long nerve axons (31,32). [Pg.284]

Phosphorus—Carbon Bond. The P—C bond is 0.184—0.194-nm long and has an energy of ca 272 kj/mol (65 kcal/mol). It is one of the more stable bonds formed by phosphoms, resistant to both hydrolysis and oxidation (7,8). Unlike the phosphoms—halogen or phosphoms—oxygen bonds, the P—C linkage is inert to exchange. A phosphoms atom connected to carbon behaves similarly to another carbon atom in a hydrocarbon chain. [Pg.361]

An important feature of P—FI bonds is the ready addition across unsaturated groups such as aldehydes or olefins to form P—C bonds. [Pg.361]

One of the most useful reactions in forming a P—C bond is the Michaehs-Arbusov reaction, which is a characteristic reaction of tricoordinate phosphoms compounds containing an alkoxy group (22). Alkylation of the electron pair is followed by rearrangement of the initial phosphonium salt. [Pg.362]

Benzonitrile with [(i -Cp )P W(CO)5 2] gives 82, the result of migration of the phosphorus atom, insertion of the nitrile moiety into the P-C bond and further C-H bond activation (01AGE3413). [Pg.27]

Various phospono- and phosphinopolycarboxylic acids (PCAs) are available in the market. These polymers are similar to phosphonates and some actually are phosphonates. They tend to exhibit varying degrees of both deposit control and corrosion control properties. For BW applications, the acrylic acid/organic phosphate polymer (PCA type 16) is the only important phosphinopolycarboxylic and has a C-P-C bond (phosphonates have a C-P-O bond). [Pg.451]

In contrast to the ester bond the P-C-bond of the phosphonic acid is hardly biologically degradable. The P-C bond will be principally but slowly degraded in the environment by the actinic sector of the sun s rays. [Pg.597]

Compounds with a P-C bond can be observed to a large extent in the field of bi- and poly functional phosphorus-containing surfactants. Alkylphosphonic... [Pg.614]

Alkylphosphonates are surface-active agents. But the main use of these substances lies in their ability to form stable complexes with bi- or polyvalent cations. Thus, besides the identification of the P-C bond and the determination of the amount of phosphorus in the molecule by one of the previously mentioned methods, measurement of their sequestering ability is carried out. [Pg.617]

Compounds with a phosphonate group linked by a P-C bond to a carbohydrate residue may be named as glycos-n-ylphosphonates (cf. 2-Carb-31.2) or as C-sub-stituted carbohydrates (cf. amino sugars, 2-Carb-14). [Pg.116]

Esters of phosphinic acid, H2P(0)(0H), are named by the same methods as used for phosphonates. For examples with two P-C bonds see 2-Carb-31.3. [Pg.116]

Phosphonate analogs to phosphate esters, in which the P—0 bond is formally replaced by a P—C bond, have attracted attention due to their stability toward the hydrolytic action of phosphatases, which renders them potential inhibitors or regulators of metabolic processes. Two alternative pathways, in fact, may achieve introduction of the phosphonate moiety by enzyme catalysis. The first employs the bioisosteric methylene phosphonate analog (39), which yields products related to sugar 1-phosphates such as (71)/(72) (Figure 10.28) [102,107]. This strategy is rather effective because of the inherent stability of (39) as a replacement for (25), but depends on the individual tolerance of the aldolase for structural modification close... [Pg.295]

However an unexpected new cyclic ruthenium phosphorus ylide half-sandwich complex 42 has been obtained by reaction of 41 with dichloromethane as solvent [79]. The cyclisation involves a C-Cl activation and corresponds to the incorporation of the methylene moiety in the P-C bond and to the ortho-metal-lation of one phenyl of the phosphine. An other novel unusual phosphonium ylide ruthenium complex 43 has also recently been described [80]. [Pg.55]

A related unprecedented double insertion of electron-deficient alkynes has also been reported in the reactions of the linear Pt2Pd heterotrimetallic complex 64 with 65 (RO2CCSCR) (Scheme 24) [95,96]. A series of unsymmetri-cal A-frame clusters 68 has thus been obtained in which a first insertion of the alkyne takes place site-selectively into the Pt-Pd bond vs the Pt-Pt bond (66). After a zwitter-ionic polar activation of the resulting inserted alkene (67), a subsequent reaction with the phosphine unit of the dpmp allows one to obtain the products 68 via the nucleophilic migration of the terminal P atom from the Pd center to the CH terminal carbon (formation of the P-C bond). [Pg.59]

Indeed, these reactions proceed at 25 °C in ethanol-aqueous media in the absence of transition metal catalysts. The ease with which P-H bonds in primary phosphines can be converted to P-C bonds, as shown in Schemes 9 and 10, demonstrates the importance of primary phosphines in the design and development of novel organophosphorus compounds. In particular, functionalized hydroxymethyl phosphines have become ubiquitous in the development of water-soluble transition metal/organometallic compounds for potential applications in biphasic aqueous-organic catalysis and also in transition metal based pharmaceutical development [53-62]. Extensive investigations on the coordination chemistry of hydroxymethyl phosphines have demonstrated unique stereospe-cific and kinetic propensity of this class of water-soluble phosphines [53-62]. Representative examples outlined in Fig. 4, depict bidentate and multidentate coordination modes and the unique kinetic propensity to stabilize various oxidation states of metal centers, such as Re( V), Rh(III), Pt(II) and Au(I), in aqueous media [53 - 62]. Therefore, the importance of functionalized primary phosphines in the development of multidentate water-soluble phosphines cannot be overemphasized. [Pg.133]

Other anionic phosphates 27a-27e, 28, 29, and 30 (Fig. 6), which contain both P-C and P-0 bonds, have been reported since 1997. In these cases, as shown by Akiba, Kawashima and Holmes, the synthetic strategy is slightly different as P-C bonds usually need to be formed prior to P-0 ones. [Pg.10]

The strained hydrocarbon [1,1,1] propellane is of special interest because of the thermodynamic and kinetic ease of addition of free radicals (R ) to it. The resulting R-substituted [ 1.1.1]pent-1-yl radicals (Eq. 3, Scheme 26) have attracted attention because of their highly pyramidal structure and consequent potentially increased reactivity. R-substituted [1.1.1]pent-1-yl radicals have a propensity to bond to three-coordinate phosphorus that is greater than that of a primary alkyl radical and similar to that of phenyl radicals. They can add irreversibly to phosphines or alkylphosphinites to afford new alkylphosphonites or alkylphosphonates via radical chain processes (Scheme 26) [63]. The high propensity of a R-substituted [1.1.1] pent-1-yl radical to react with three-coordinate phosphorus molecules reflects its highly pyramidal structure, which is accompanied by the increased s-character of its SOMO orbital and the strength of the P-C bond in the intermediate phosphoranyl radical. [Pg.59]

Abstract Many similarities between the chemistry of carbon and phosphorus in low coordination numbers (i.e.,CN=l or 2) have been established. In particular, the parallel between the molecular chemistry of the P=C bond in phosphaalkenes and the C=C bond in olefins has attracted considerable attention. An emerging area in this field involves expanding the analogy between P=C and C=C bonds to polymer science. This review provides a background to this new area by describing the relevant synthetic methods for P=C bond formation and known phosphorus-carbon analogies in molecular chemistry. Recent advances in the addition polymerization of phosphaalkenes and the synthesis and properties of Tx-con-jugated poly(p-phenylenephosphaalkene)s will be described. [Pg.107]

A brief history of (3p-2p)7i bonds between phosphorus and carbon followed by an introduction to the methods of phosphaalkene synthesis that are pertinent to this review will be provided. The earliest stable compound exhibiting (3p-2p)7x bonding between phosphorus and carbon was the phosphamethine cyanine cation (1) [33]. An isolable substituted phosphabenzene (2) appeared just two years later [34]. The parent phosphabenzene (3) was later reported in 1971 [35]. These were remarkable achievements and, collectively, they played an important role in the downfall of the long held double bond rule . The electronic delocalization of the phosphorus-carbon multiple bond in 1-3, which gives rise to their stability, unfortunately prevented a thorough study of the chemistry and reactivity of the P=C bond. [Pg.110]

Another method that has been used to prepare phosphaalkenes is the phos-pha-Peterson reaction, a phosphorus analog of the Peterson olefination [46-49]. In this reaction a lithium silylphosphide is treated with an aldehyde or ketone to yield the phosphaalkene (9). Analogous reactions can be conducted with bis(trimethylsilyl)phosphines (10) and ketones (11) using a catalytic quantity of anhydrous base (i.e., NaOH, KOH) [50]. Generally, the reactions proceed cleanly and in high yield. Sufficiently bulky substituents must be employed to stabilize the P=C bond and prevent rapid dimerization to 1,3-diphosphetaines. [Pg.112]

This section will provide details of recent efforts to polymerize phosphaalkenes. It will begin with an introduction to the factors that must be considered when attempting to polymerize P=C bonds. In addition, a historical context will be provided since, perhaps ironically, it was so-called polymerization reactions that plagued early efforts to prepare compounds possessing heavier element multiple bonds. Finally, it will close with the first successful polymerization of a P=C bond to give poly(methylenephosphine)s. [Pg.113]

The monomer 19 can also be polymerized using analogous methods of initiation to those employed in organic polymer science. Radical initiators afford regioirregular polymers, whereas anionic initiators add selectively to the phosphorus atom of the P=C bond and thus yield a regioregular polymer [85]. The product of the initial addition of MeLi across the P=C bond, Mes(Me)P-CPh2Li, was identified spectroscopically. The polymers obtained from anionic initiation are spectroscopically identical to those obtained from the thermolysis. Reasonable molecular weights (ca. 5000-10,000 g mol 0 are obtained when methyllithium is used as an initiator. [Pg.118]

This review has shown that the analogy between P=C and C=C bonds can indeed be extended to polymer chemistry. Two of the most common uses for C=C bonds in polymer science have successfully been applied to P=C bonds. In particular, the addition polymerization of phosphaalkenes affords functional poly(methylenephosphine)s the first examples of macromolecules with alternating phosphorus and carbon atoms. The chemical functionality of the phosphine center may lead to applications in areas such as polymer-supported catalysis. In addition, the first n-conjugated phosphorus analogs of poly(p-phenylenevinylene) have been prepared. Comparison of the electronic properties of the polymers with molecular model compounds is consistent with some degree of n-conjugation in the polymer backbone. [Pg.124]

This new area of chemistry is still at a very early stage of development with most of the breakthroughs occurring in the last couple of years. The future holds promise for more exciting developments in the use of P=C bonds in polymer science and it is very possible that apphcations may be found for these new types of materials. In addition, an exciting prospect for the future is the further expansion of these methodologies, which are so common for C=C bonds, to other phosphorus-containing multiple bonds and other p-block elements. [Pg.124]


See other pages where C-P Bonds is mentioned: [Pg.259]    [Pg.260]    [Pg.356]    [Pg.360]    [Pg.544]    [Pg.25]    [Pg.582]    [Pg.94]    [Pg.96]    [Pg.42]    [Pg.125]    [Pg.87]    [Pg.107]    [Pg.107]    [Pg.109]    [Pg.110]    [Pg.111]    [Pg.111]    [Pg.113]    [Pg.113]    [Pg.114]    [Pg.114]    [Pg.115]    [Pg.119]    [Pg.121]    [Pg.122]    [Pg.122]   


SEARCH



C-Glycosyl compounds P-bond cleavage

C-O-P bonds

C-P bond fonnation

C—P bond formation

Diazoalkanes C=P bonds

Double bonds linked by C and P atoms

Lithium aluminum hydride C—P bond cleavage

P C—H bonds

P bonds

P-C bond cleavage

P-bonding

Phosphonic acid, P-nitrophenylmethylP—C bond cleavage

Reactions involving P—C Bond Cleavage

Reduction P—C bonds

Solvent-Free C-P Bond Formation

Solvent-Free C-P Bond Formation under Microwave Irradiation

© 2024 chempedia.info