Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen production cycle, availability

This paper presents an availability analysis of one type of oxygen production cycle centering around separation of oxygen and nitrogen in a fractionating tower. The plant is driven by work inputs to compressors and blowers. The analysis shows the irreversible entropy production in the various units and, in turn, the added work inputs required as a consequence thereof. Furthermore, a comparison is made with an ideal process of the same type, wherein all irreversibilities are reduced to the minimum possible, subject to the constraints imposed by (a) the use of a tower, and (b) the properties of the flowing streams. [Pg.195]

Figure 19-1 a Normal and ischemic myocardial metabolism of glucose. A total production of 36 moles of ATP results from the aerobic catabolism of 1 mole of glucose and use of NADH and FADH. in the oxidative phosphorylation process in mitochondria. When oxygen is not available, NADH and FADH levels rise and shut off the tricarboxylic acid (TCA) cycle. Pyruvate is converted to lactate. Only 2 moles of ATP are formed from anaerobic catabolism of 1 mole of glucose. (Adapted from Giuliani, E. R., ei al. Cardiology Fundamentals and Practice, 2nd ed. By permission of the Mayo Foundation, Rochester, MN.)... [Pg.623]

While this book is not the appropriate place for a detailed discussion of the ADP-ATP cycle, perhaps a bit more mechanistic detail is useful. The aerobic metabolism of glucose to produce ATP from ADP can be-considered to consist of three parts the fermentation of glucose to form pyruvate (and a small amount of ATP from ADP), the conversion of the pyruvate to carbon dioxide in the citric acid cycle in which NAD" " and FAD (the oxidized form of flavin adenine dinucleotide) are converted to NADH and FADH2, and their oxidation in the respiratory chain, resulting in the formation of a larger quantity of ATP from ADP. If oxygen is not available, so the reaction is anaerobic, only the first step, formation of pyruvate, occurs with a small amount of ATP production. [Pg.884]

Results of experiments performed with oxidized PP doped with secondary HAS Tinuvin 770 show high concentration of nitroxides in the vicinity of both surfaces due to the DLO. This was observed after continuous exposure to radiation in the Weather-Ometer on the irradiated (front) and non-irradiated (back) surfaces as well as on the both surfaces of the samples e qjosed thermally in hot air oven. Very low concentration of nitroxides was present inside of the samples. The concentration profiles are of characteristic U-shape and indicate preferential surface oxidation of PP, with a specific response to thermal and photochemical stress (Fig. 2). The assumed complex HAS mechanism is thus more explicitly confirmed in thick samples than by monitoring nitroxide concentration in PP films. It is consistent with surface consumption of oxygen in thick plaques and lower availability of oxygenated products in the depth of the PP matrix necessary for a direct development of nitroxides from HAS as well as for nitroxide regeneration from O-alkylhydroxylamine >NOP within the regenerative cycle (7). [Pg.350]

Glycolysis takes place in the cell cytoplasm, whereas the decarboxylation of pyruvate and the subsequent oxidation of acetyl-coenzyme A via the tricarboxylic acid cycle take place in the mitochondrial matrix. Under anaerobic conditions, oxygen is not available for the oxidation of reduced NAD by oxidative phosphorylation, in order to allow the release of a small amount of energy by continuing the breakdown of glucose to pyruvate, reduced NAD must be converted to the oxidised form, if not, step 7 of Fig. 9.4 will not take place and energy production will be blocked. Oxidation of reduced NAD may be achieved under such conditions by the formation of lactate from pyruvate in the presence of lactate dehydrogenase ... [Pg.201]

As its name implies, the citric acid cycle is a closed loop of reactions in which the product of the hnal step (oxaloacetate) is a reactant in the first step. The intermediates are constantly regenerated and flow continuously through the cycle, which operates as long as the oxidizing coenzymes NAD+ and FAD are available. To meet this condition, the reduced coenzymes NADH and FADH2 must be reoxidized via the electron-transport chain, which in turn relies on oxygen as the ultimate electron acceptor. Thus, the cycle is dependent on the availability of oxygen and on the operation of the electron-transport chain. [Pg.1154]

Azo dye-containing wastewaters seems to be one of the most polluted wastewaters, which require efficient decolorization and subsequent aromatic amine metabolism. On the basis of the available literature, it can be concluded that anaerobic-aerobic SBR operations are quite convenient for the complete biodegradation of both azo dyes and their breakdown products. Nevertheless, like the other methods used for biological treatment, SBRs treating colored wastewaters have some limitations. Presence of forceful alternative electron acceptors such as nitrate and oxygen, availability of an electron donor, microorganisms, and cycle times of anaerobic and aerobic reaction phases can be evaluated as quite significant. [Pg.69]

Timber can be viewed as a classic renewable material. Trees absorb carbon dioxide and utilize water and sunlight to produce a material that can be used in construction, to produce paper or to provide chemical feedstocks, with the production of oxygen as a byproduct. Furthermore, at the end of a product life cycle, the material constituents can be combusted, or composted to return the chemical constituents to the grand cycles . In essence, timber use represents a classic example of a cyclic materials flow, mimicking the flows of materials through natural cycles. Provided that we manage our forests well and do not harvest beyond the capacity of the planet to provide timber, we have at our disposal an inexhaustible resource available in perpetuity. [Pg.6]

The Morita-Baylis-Hillman (MBH) reaction is the formation of a-methylene-/ -hydroxycarbonyl compounds X by addition of aldehydes IX to a,/ -unsaturated carbonyl compounds VIII, for example vinyl ketones, acrylonitriles or acrylic esters (Scheme 6.58) [143-148]. For the reaction to occur the presence of catalytically active nucleophiles ( Nu , Scheme 6.58) is required. It is now commonly accepted that the MBH reaction is initiated by addition of the catalytically active nucleophile to the enone/enoate VIII. The resulting enolate adds to the aldehyde IX, establishing the new stereogenic center at the aldehydic carbonyl carbon atom. Formation of the product X is completed by proton transfer from the a-position of the carbonyl moiety to the alcoholate oxygen atom with concomitant elimination of the nucleophile. Thus Nu is available for the next catalytic cycle. [Pg.182]


See other pages where Oxygen production cycle, availability is mentioned: [Pg.524]    [Pg.1189]    [Pg.97]    [Pg.9]    [Pg.76]    [Pg.631]    [Pg.28]    [Pg.451]    [Pg.133]    [Pg.134]    [Pg.362]    [Pg.366]    [Pg.406]    [Pg.461]    [Pg.284]    [Pg.913]    [Pg.1205]    [Pg.303]    [Pg.409]    [Pg.365]    [Pg.207]    [Pg.375]    [Pg.131]    [Pg.673]    [Pg.231]    [Pg.57]    [Pg.61]    [Pg.578]    [Pg.1205]    [Pg.326]    [Pg.363]    [Pg.46]    [Pg.365]    [Pg.57]    [Pg.400]    [Pg.400]    [Pg.21]    [Pg.141]    [Pg.284]    [Pg.451]    [Pg.438]   


SEARCH



Available oxygen

OXYGEN product

Oxygen availability

Oxygen production

Oxygenated products

Product availability

Production cycle

© 2024 chempedia.info