Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative substitution, aromatic

Ozonation of Aromatics. Aromatic ring unsaturation is attacked much slower than olefinic double bonds, but behaves as if the double bonds in the classical Kekule stmctures really do exist. Thus, benzene yields three moles of glyoxal, which can be oxidized further to glyoxyUc acid and then to oxahc acid. Substituted aromatics give mixtures of aUphatic acids. Ring substituents such as amino, nitro, and sulfonate are cleaved during ozonation. [Pg.494]

Asscher and coworkers32 have measured the oxidation rates of cuprous chloride by substituted aromatic sulfonyl chlorides covering a wide range of Hammett (7-values, namely... [Pg.1097]

Consequently, as a result of increasing environmental pressure many chlorine and nitric acid based processes for the manufacture of substituted aromatic acids are currently being replaced by cleaner, catalytic autoxidation processes. Benzoic acid is traditionally manufactured (ref. 14) via cobalt-catalyzed autoxidation of toluene in the absence of solvent (Fig. 2). The selectivity is ca. 90% at 30% toluene conversion. As noted earlier, oxidation of p-xylene under these conditions gives p-toluic acid in high yield. For further oxidation to terephthalic acid the stronger bromide/cobalt/manganese cocktail is needed. [Pg.280]

One 7i-bond of an aromatic ring can be converted to a cyclohexadiene 1,2-diol by reaction with enzymes associated with P. putida A variety of substituted aromatic compounds can be oxidized, including bromobenzene, chlorobenzene, " and toluene. In these latter cases, introduction of the hydroxyl groups generates a chiral molecule that can be used as a template for asymmetric syntheses. " ... [Pg.1051]

C. Nucleophilic Attack on Other Atoms.—Amidoximes have been shown to react with tris(dimethylamino)phosphine by displacing dimethylamine to give the phosphine oxides (52), but some N-substituted aromatic amidoximes give derivatives of (53). ... [Pg.12]

Selifonov SA, M Grifoll, RW Eaton, PJ Chapman PJ (1996) Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2- dioxygenase. Appl Environ Microbiol 62 507-514. [Pg.423]

A useful application in the manufacture of ion-exchange resins may well be possible which avoids the use of carcinogenic chloromethyl ether. Here, a polymer of p-methyl styrene is chlorinated on the side chain with aqueous NaOCl and a phase-transfer catalyst. Sasson et al. (1986) have shown how stubborn . substituted aromatics like nitro/chlorotoluenes can be oxidized to the corresponding acids by using aqueous NaOCl containing Ru based catalyst. [Pg.147]

Reversed micelles have also shown to be useful not only in bioconversions, but also in organic synthesis. Shield et al. (1986) have reviewed this subject and brought out its advantages in peptide synthesis, oxidation or reduction of steroids, selective oxidation of isomeric mixtures of aromatics, etc. In the oxidation of aromatic aldehydes to carboxylic acids with enzymes hosted in reverse micelles, the ortho substituted substrates react much more slowly than other isomers. [Pg.149]

On the other hand, the oxidation of the alkyl substituent in alkyl aromatic compounds can be carried out by various methods efficiently. For example, CAN has been used to oxidize substituted toluene to aryl aldehydes. Selective oxidation at one methyl group can be achieved (Eq. 7.19).44 The reaction is usually carried out in aqueous acetic acid. [Pg.209]

In the oxidation of aromatic substances at the anode, radical cations or dications are formed as intermediates and subsequently react with the solvent or with anions of the base electrolyte. For example, depending on the conditions, 1,4-dimethoxybenzene is cyanized after the substitution of one methoxy group, methoxylated after addition of two methoxy groups or acetoxylated after substitution of one hydrogen on the aromatic ring, as shown in Fig. 5.55, where the solvent is indicated over the arrow and the base electrolyte and electrode under the arrow for each reaction HAc denotes acetic acid. [Pg.397]

Raja and Perumal reported the synthesis of novel 2,6-diaryl-3-(arylthio)piperidin-4-ones via a four-component reaction consisting of arylthioacetones, 2-substituted aromatic aldehydes and methylamine or ammonium acetate <06CPB795>. Further elaboration of this four component reaction to a novel five component tandem Mannich-enamine-substitution sequence involving the reaction of ethyl 2-[(2-oxopropyl)sulfanyl]acetate, two equivalents of a substituted aromatic aldehyde, and two equivalents of ammonium acetate is shown below <06T4892>. When this five-component tandem reaction involves para-substituted benzaldehydes, the cis (193) and trans (194) diastereomers of thiazones are obtained. Alternatively, orf/zo-substituted benzaldehydes form only the trans (194) diastereomer along with an air-oxidized product 195. [Pg.341]

I.3.4.2.5. Carbonyl and Thiocarbonyl Compounds a-(Hydroxyimino)phenyl-acetonitrile oxide (generated in situ at room temperature from PhC( NOH)C ( NOH)Cl in the presence of NaHC03 or Et3N) reacts with simple aldehydes and ketones R1R2CO to give 1,4,2-dioxazoles 180 (347). Related dioxazoles, formed by cycloaddition of benzonitrile oxide to aromatic aldehydes, upon treatment with I-BuOK, undergo cyclo-reversion, allowing direct conversion to substituted benzoic acids or their esters (348). [Pg.56]

Goumont et al. exploited this kind of reactivity for the nucleophilic substitution of the hydrogen atom in position 5 by carbon nuclophiles <20030BC2192> (Scheme 18). These authors reported that 6,8-dinitrotetrazolo[l,5- ]pyr-idine 11 easily reacts with potassium nitropropenide to yield an adduct similar to those obtained with alcohols 12. This adduct when oxidized by cerium ammonium nitrate yields the nitroalkyl-substituted aromatic compound 64. [Pg.655]

Oxidative attack on a carbon-hydrogen bond of an alkyl group a to a nitrogen atom is not restricted to saturated aliphatic amines. In fact X in an X-N-CH- structural subunit can be virtually any common atomic grouping that can be found in stable organic molecules. For example, w-carbon hydrogens of Aralkyl-substituted aromatic cyclic amines (119), aryl amines (120), amides (121), amidines (122), A-nitrosodialkylamines (123), etc. are all subject to oxidative attack, carbinolamine formation, and in most cases release of an aldehyde or ketone depending on the substitution pattern (1° or 2°)... [Pg.79]

A similar (but somewhat less obvious) dichotomy results in the simultaneous ring and sidechain substitution of durene. Thus in this charge-transfer nitration, the addition of N02 to the cation radical DUR+- (72) occurs in competition with its deprotonation (73), in which the pyridine has been shown to act as a base (Masnovi et al., 1989) (Scheme 15). [Note that deprotonation of DUR+- also leads to aromatic dimers via the subsequent (oxidative) substitution of the benzylic radical formed in (73) (Bewick et al., 1975 Lau and Kochi, 1984).]... [Pg.252]

The conversion of aromatic compounds comprises coupling, nuclear and ben-zylic substitution, and in some cases, addition. Homo- and in a more limited scope, heterocoupling is achieved for unsubstituted and substituted aromatic compounds in direct or indirect anodic processes. Chemically, there is a limited variety of expensive oxidation reagents available, but a large scope of transition... [Pg.163]

Several elegant syntheses of anthra-cyclinone aglycons are based on the ability to intercept the intermediate radical cation (76) formed from the oxidation of aromatic ethers (75) and (79) in situ with alkanols [9, 44, 45]. Inter- and intramolecular capture can occur. As illustrated in Scheme 19, the methodology leads to the facile construction of substituted quinone mono- and bisketals. [Pg.327]

Anodic oxidation of o-amino substituted aromatic Schilf bases (38 and 40) to imidazole derivatives 39 and 41 were carried out in CH3CN-O.I mol/1 Et4C104 solution with addition of pyridine as a base, using controlled potential electrolysis and a divided cell [72] (Scheme 22). [Pg.111]

Dichloronitrobenzene has been prepared by deamination of 3,5-dichloro-4-nitroaniline and of 2,4-dichloro-3-nitroaniline. This procedure is an example of the rather general oxidation of anilines to nitrobenzenes with peroxytrifluoroacetic acid. Use of this reagent is frequently the method of choice for carrying out this transformation, and it is particularly suitable for oxidation of negatively substituted aromatic amines. Conversely, those aromatic amines, such as />-anisidine and j8-naphthylamine, whose aromatic nuclei are unusually sensitive to electrophilic attack give intractable mixtures with this reagent. This is not... [Pg.107]

Correlation of structure and reactivity in the oxidation of substituted aromatic anils by pyridinium fluorochromate (PFC) has been attempted using Grunwald-Winstein and Hammett equations. The stoichiometry between the substrate and oxidant is 1 2 in the oxidation of cyclic ketones by PFC to 1,2-diketones. PFC oxidation of secondary alcohols has been investigated. ... [Pg.219]

It is known that the oxidation of alkyl-substituted aromatic hydrocarbons in acetic acid on metal bromide catalysis follows the one-electron transfer mechanism (Sheldon and Kochi 1981). The rate-determining stage is the one-electron transfer from the substrate to the metal ion in the highest oxidation state (Digurov et al. 1986). As a result, an unstable cation-radical is formed that... [Pg.379]


See other pages where Oxidative substitution, aromatic is mentioned: [Pg.242]    [Pg.146]    [Pg.242]    [Pg.146]    [Pg.154]    [Pg.344]    [Pg.469]    [Pg.26]    [Pg.23]    [Pg.31]    [Pg.465]    [Pg.373]    [Pg.376]    [Pg.134]    [Pg.386]    [Pg.182]    [Pg.190]    [Pg.12]    [Pg.345]    [Pg.410]    [Pg.6]    [Pg.220]    [Pg.283]    [Pg.132]    [Pg.137]   


SEARCH



Aromatic oxidation

Aromatics oxidation

Aromatization, oxidative

Oxidative substitution

Substituted Oxidation

© 2024 chempedia.info