Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative coupling to ethylene

Methane can be oxidatively coupled to ethylene with very high yield using the novel gas recycle electrocatalytic or catalytic reactor separator. The ethylene yield is up to 85% for batch operation and up to 50% for continuous flow operation. These promising results, which stem from the novel reactor design and from the adsorptive properties of the molecular sieve material, can be rationalized in terms of a simple macroscopic kinetic model. Such simplified models may be useful for scale up purposes. For practical applications it would be desirable to reduce the recycle ratio p to lower values (e.g. 5-8). This requires a single-pass C2 yield of the order of 15-20%. The Sr-doped La203... [Pg.396]

ENGINEERING EVALUATION OF MAKING LIQUID FUEL VIA OXIDATIVE COUPLING TO ETHYLENE... [Pg.214]

Piperazine, N-alkylation with benzyl chloride, 42, 19 Piperazine, 1-benzyl-, 42,19 Piperidine, addition to ethylene, 43, 45 as catalyst for Claisen-Schmidt condensation, 41, 40 Piperidine, 1-ethyl-, 43, 45 Piperidine, 1-(2-naphthyl)-, 40,74 Pivalic acid, oxidative coupling to a,a,-a, a -tetramethyladipic add, 40, 92... [Pg.120]

The formation of vinyl acetate via the oxidative coupling of ethylene and acetic acid was among the earliest Pd-catalyzed reactions developed (Sect. 2) [19,20]. Subsequent study of this reaction with higher olefins revealed that, in addition to C-2 acetoxylation, allylic acetoxylation occurs to generate products with the acetoxy group at the C-1 and C-3 positions (Scheme 14). The synthetic utihty of these products imderhes the substantial historical interest in these reactions, and both BQ and dioxygen have been used as oxidants. [Pg.106]

Many cyclization reactions via formation of metallacycles from alkynes and alkenes are known. Formally these reactions can be considered as oxidative cyclization (coupling) involving oxidation of the central metals. Although confusing, they are also called the reductive cyclization, because alkynes and alkenes are reduced to alkenes and alkanes by the metallacycle formation. Three basic patterns for the intermolecular oxidative coupling to give the metallacyclopentane 94, metallacyclopentene 95 and metallacyclopentadiene 96 are known. (For simplicity only ethylene and acetylene are used. The reaction can be extended to substituted alkenes and alkynes too). Formation of these metallacycles is not a one-step process, and is understood by initial formation of an tj2 complex, or metallacyclopropene 99, followed by insertion of the alkyne or alkene to generate the metallacycles 94-96, 100 and 101-103 (Scheme 7.1). [Pg.238]

Recently Ito and Lunsford [ref.l] have shown that ethane and ethylene can be obtained directly from methane by oxidative coupling (0XC0) using a lithium-proinoted magnesium oxide catalyst. CSIRO, in collaboration with The Broken Hill Proprietary Company Limited (BHP), is conducting research on oxidative coupling to determine the feasibility of using this technique in the commercial production of liquid fuels from natural gas. [Pg.395]

Scheme 6.16.7 Oxidative coupling of ethylene ligands at a cationic chromium complex to form the respective Cr(l I l)-metallacycle that later inserts ethylene. Scheme 6.16.7 Oxidative coupling of ethylene ligands at a cationic chromium complex to form the respective Cr(l I l)-metallacycle that later inserts ethylene.
The direct methane conversion technology, which has received the most research attention, involves the oxidative coupling of methane to produce higher hydrocarbons (qv) such as ethylene (qv). These olefinic products may be upgraded to Hquid fuels via catalytic oligomerization processes. [Pg.78]

Generally, the most developed processes involve oxidative coupling of methane to higher hydrocarbons. Oxidative coupling converts methane to ethane and ethylene by... [Pg.86]

A different approach, taken by both Monsanto (58) and Gulf Research and Development Company (59), involved the oxidative coupling of two molecules of toluene to yield stilbene. The stilbene is then subjected to a metathesis reaction with ethylene to yield two molecules of styrene. [Pg.190]

Benzyl chloride readily forms a Grignard compound by reaction with magnesium in ether with the concomitant formation of substantial coupling product, 1,2-diphenylethane [103-29-7]. Benzyl chloride is oxidized first to benzaldehyde [100-52-7] and then to benzoic acid. Nitric acid oxidizes directly to benzoic acid [65-85-0]. Reaction with ethylene oxide produces the benzyl chlorohydrin ether, CgH CH20CH2CH2Cl (18). Benzylphosphonic acid [10542-07-1] is formed from the reaction of benzyl chloride and triethyl phosphite followed by hydrolysis (19). [Pg.59]

The palladium chloride process for oxidizing olefins to aldehydes in aqueous solution (Wacker process) apparendy involves an intermediate anionic complex such as dichloro(ethylene)hydroxopalladate(II) or else a neutral aqua complex PdCl2 (CH2=CH2)(H2 0). The coordinated PdCl2 is reduced to Pd during the olefin oxidation and is reoxidized by the cupric—cuprous chloride couple, which in turn is reoxidized by oxygen, and the net reaction for any olefin (RCH=CH2) is then... [Pg.171]

Although ethylene is produced by various methods as follows, only a few are commercially proven thermal cracking of hydrocarbons, catalytic pyrolysis, membrane dehydrogenation of ethane, oxydehydrogenation of ethane, oxidative coupling of methane, methanol to ethylene, dehydration of ethanol, ethylene from coal, disproportionation of propylene, and ethylene as a by-product. [Pg.434]

Cu(rr) compounds are frequently used in conjunction with Pd(I[) in the oxidation of olefins in the Wacker process. Their role has been viewed as that of catalyst for autoxidation of Pd metal back to Pd(II). Dozono and Shiba report the rate of oxidation of ethylene by a PdCl2-CuCl2 couple to be given by... [Pg.340]

The chemistry of vinyl acetate synthesis from the gas-phase oxidative coupling of acetic acid with ethylene has been shown to be facilitated by many co-catalysts. Since the inception of the ethylene-based homogeneous liquid-phase process by Moiseev et al. (1960), the active c ytic species in both the liquid and gas-phase process has always been seen to be some form of palladium acetate [Nakamura et al, 1971 Augustine and Blitz, 1993]. Many co-catalysts which help to enhance the productivity or selectivity of the catalyst have appeared in the literature over the years. The most notable promoters being gold (Au) [Sennewald et al., 1971 Bissot, 1977], cadmium acetate (Cd(OAc)j) [Hoechst, 1967], and potassium acetate (KOAc) [Sennewald et al., 1971 Bissot, 1977]. [Pg.191]

Oxidative Coupling of Methane to Ethylene with 85% Yield in a Gas Recycle Electrocatalytic or Catalytic Reactor-Separator... [Pg.387]


See other pages where Oxidative coupling to ethylene is mentioned: [Pg.387]    [Pg.188]    [Pg.212]    [Pg.294]    [Pg.183]    [Pg.222]    [Pg.30]    [Pg.387]    [Pg.188]    [Pg.212]    [Pg.294]    [Pg.183]    [Pg.222]    [Pg.30]    [Pg.86]    [Pg.322]    [Pg.86]    [Pg.363]    [Pg.367]    [Pg.322]    [Pg.143]    [Pg.191]    [Pg.209]    [Pg.920]    [Pg.335]    [Pg.333]    [Pg.198]    [Pg.86]    [Pg.400]    [Pg.485]    [Pg.443]    [Pg.457]    [Pg.7]    [Pg.210]    [Pg.194]    [Pg.376]    [Pg.823]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Ethylene coupling

© 2024 chempedia.info