Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Numerical Models

A number of numerical approaches have been applied to the solution of the general population balance equation  [Pg.295]

Chapter 7 Powder Synthesis with Gas Phase Reactants [Pg.296]


The moisture content Ah is obtained from numerical simulations with the Lattice Gas Automaton (LGA). A two dimensional isotropic lattice gas, i.e. a modified FHP (Frisch-Hasslacher-Pomeau) model suggested in the 80s [11] is used for mimicking moisture flow. Due to the relatively simple input and allowance of complex boundary conditions in porous concrete, the LGA turned out to be very suitable in comparison with other numerical models. [Pg.103]

The NMR experimental methods for studying chemical exchange are all fairly routine experiments, used in many other NMR contexts. To interpret these results, a numerical model of the exchange, as a frmction of rate, is fitted to the experimental data. It is therefore necessary to look at the theory behind the effects of chemical exchange. Much of the theory is developed for intennediate exchange, and this is the most complex case. However, with this theory, all of the rest of chemical exchange can be understood. [Pg.2092]

But a computer simulation is more than a few clever data structures. We need algorithms to manipulate our system. In some way, we have to invent ways to let the big computer in our hands do things with the model that is useful for our needs. There are a number of ways for such a time evolution of the system the most prominent is the Monte Carlo procedure that follows an appropriate random path through configuration space in order to investigate equilibrium properties. Then there is molecular dynamics, which follows classical mechanical trajectories. There is a variety of dissipative dynamical methods, such as Brownian dynamics. All these techniques operate on the fundamental degrees of freedom of what we define to be our model. This is the common feature of computer simulations as opposed to other numerical approaches. [Pg.749]

A common feature in the models reviewed above was to calculate pressure and temperature distributions in a sequential procedure so that the interactions between temperature and other variables were ignored. It is therefore desirable to develop a numerical model that couples the solutions of pressure and temperature. The absence of such a model is mainly due to the excessive work required by the coupling computations and the difficulties in handling the numerical convergence problem. Wang et al. [27] combined the isothermal model proposed by Hu and Zhu [16,17] with the method proposed by Lai et al. for thermal analysis and presented a transient thermal mixed lubrication model. Pressure and temperature distributions are solved iteratively in a iterative loop so that the interactions between pressure and temperature can be examined. [Pg.120]

Numerous other QSAR models relating BBB penetration to calculated molecular descriptors have also appeared in literature see for example [27-29]. In each case, PSA was identified as one of the most important parameters determining blood-brain barrier penetration. [Pg.116]

As an extension of perceptron-like networks MLF networks can be used for non-linear classification tasks. They can however also be used to model complex non-linear relationships between two related series of data, descriptor or independent variables (X matrix) and their associated predictor or dependent variables (Y matrix). Used as such they are an alternative for other numerical non-linear methods. Each row of the X-data table corresponds to an input or descriptor pattern. The corresponding row in the Y matrix is the associated desired output or solution pattern. A detailed description can be found in Refs. [9,10,12-18]. [Pg.662]

The Geothermal Response Test as developed by us and others has proven important to obtain accurate information on ground thermal properties for Borehole Heat Exchanger design. In addition to the classical line source approach used for the analysis of the response data, parameter estimation techniques employing a numerical model to calculate the temperature response of the borehole have been developed. The main use of these models has been to obtain estimates in the case of non-constant heat flux. Also, the parameter estimation approach allows the inclusion of additional parameters such as heat capacity or shank spacing, to be estimated as well. [Pg.190]

In the past decade, vibronic coupling models have been used extensively and successfully to explain the short-time excited-state dynamics of small to medium-sized molecules [200-202]. In many cases, these models were used in conjunction with the MCTDH method [203-207] and the comparison to experimental data (typically electronic absorption spectra) validated both the MCTDH method and the model potentials, which were obtained by fitting high-level quantum chemistry calculations. In certain cases the ab initio-determined parameters were modified to agree with experimental results (e.g., excitation energies). The MCTDH method assumes the existence of factorizable parameterized PESs and is thus very different from AIMS. However, it does scale more favorably with system size than other numerically exact quantum... [Pg.498]

Obviously, these two items are not strictly separated in contrast, the most fruitful approach is when they are simultaneously followed, so that they can mutually benefit from each other. In this chapter, we want to focus on the use of simulation methods as a design tool for gas-fluidized bed reactors, for which we consider gas-solid flows at four distinctive levels of modeling. However, before discussing the multilevel scheme, it is useful to first briefly consider the numerical modeling of the gas and solid phase separately. [Pg.67]

In the Lagrangian frame, droplet trajectories in the spray may be calculated using Thomas 2-D equations of motion for a sphere 5791 or the simplified forms)154 1561 The gas velocity distribution in the spray can be determined by either numerical modeling or direct experimental measurements. Using the uncoupled solution approach, many CFD software packages or Navier-Stokes solvers can be used to calculate the gas velocity distribution for various process parameters and atomizer geometries/configurations. On the other hand, somesimple expressions for the gas velocity distribution can be derived from... [Pg.369]

For most numerically solved models, a control-volume approach is used. This approach is based on dividing the modeling domain into a mesh. Between mesh points, there are finite elements or boxes. Using Taylor series expansions, the governing equations are cast in finite-difference form. Next, the equations for the two half-boxes on either side of a mesh point are set equal to each other hence, mass is rigorously conserved. This approach requires that all vectors be defined at half-mesh points, all scalars at full-mesh points, and all reaction rates at quarter-mesh points. The exact details of the numerical methods can be found elsewhere (for example, see ref 273) and are not the purview of this review article. The above approach is essentially the same as that used in CFD packages (e.g.. Fluent) or discussed in Appendix C of ref 139 and is related to other numerical methods applied to fuel-cell modeling. ... [Pg.470]

Other computer models and analytical tools are used to predict how materials, systems, or personnel respond when exposed to fire conditions. Hazard-specific calculations are more widely used in the petrochemical industry, particularly as they apply to structural analysis and exposures to personnel. Explosion and vapor cloud hazard modeling has been addressed in other CCPS Guidelines (CCPS, 1994). Again, levels of sophistication range from hand calculations using closed-form equations to numerical techniques. [Pg.414]

Although several different system configurations have been simulated, the focus of this paper will be on the unsteady, compressible, multiphase flow in an axisymmetric ramjet combustor. After a brief discussion of the details of the geometry and the numerical model in the next section, a series of numerical simulations in which the physical complexity of the problem solved has been systematically increased are presented. For each case, the significance of the results for the combustion of high-energy fuels is elucidated. Finally, the overall accomplishments and the potential impact of the research for the simulation of other advanced chemical propulsion systems are discussed. [Pg.112]


See other pages where Other Numerical Models is mentioned: [Pg.191]    [Pg.1081]    [Pg.160]    [Pg.295]    [Pg.427]    [Pg.253]    [Pg.325]    [Pg.191]    [Pg.1081]    [Pg.160]    [Pg.295]    [Pg.427]    [Pg.253]    [Pg.325]    [Pg.17]    [Pg.344]    [Pg.631]    [Pg.2184]    [Pg.130]    [Pg.116]    [Pg.120]    [Pg.317]    [Pg.207]    [Pg.212]    [Pg.325]    [Pg.132]    [Pg.31]    [Pg.40]    [Pg.179]    [Pg.92]    [Pg.365]    [Pg.377]    [Pg.483]    [Pg.154]    [Pg.18]    [Pg.353]    [Pg.315]    [Pg.505]    [Pg.112]    [Pg.225]    [Pg.20]    [Pg.220]    [Pg.124]    [Pg.57]   


SEARCH



Modelling numerical

Numerical model

Numerical modeling

© 2024 chempedia.info