Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic solvents dimethyl formamide

The physical properties of finish removers vary considerably due to the diverse uses and requirements of the removers. Finish removers can be grouped by the principal ingredient of the formula, method of appHcation, method of removal, chemical base, viscosity, or hazardous classification. Except for method of apphcation, a paint remover formulation usually has one aspect of each group, by which it can be used for one or more appHcations. A Hst of the most common organic solvents used in finish removers has been compiled (3). Many are mentioned throughout this article others include ethyl lactate [97-64-3] propylene carbonate [108-32-7] furfural alcohol [98-01-1/, dimethyl formamide [68-12-2] tetrahydrofuran [109-99-9] methyl amyl ketone [110-43-0] dipropylene glycol methyl ether [34590-94-8] and Exxate 600, a trade name of Exxon Chemicals. [Pg.550]

Organic salts (e.g. trimethylammonium benzoate) are usually purified by recrystallisation from polar solvents (e.g. water, ethanol or dimethyl formamide). If the salt is too soluble in a polar solvent, its concentrated solution should be treated dropwise with a miscible nonpolar, or less polar, solvent (see Table 8, Chapter 1) until crystallisation begins. [Pg.68]

Use of less hazardous solvents - Since the reaction is two phase, simple benign solvents can often be used since PTC avoids the need to find a solvent that will dissolve all reactants, e.g. dipolar aprotic solvents such as dimethyl formamide. In some cases an organic solvent may not be required at all, the substrate forming the second phase. [Pg.120]

Various organic solvents are used, such as dimethyl sulfoxide (DMSO), dimethyl-formamide, ethanol and acetone. The volume added must not be toxic to cells. Greater than 10% water v/v can be toxic because of nutrient dilution and osmolality changes. [Pg.218]

Starting materials which are only sparingly soluble in water may require solvents that are either partially or entirely organic. Diazotization can either be carried out as usual with an aqueous sodium nitrite solution, or alternatively with nitrosylsul-furic acid or an organic nitrite. Appropriate solvents must be stable to the reactants. Examples include aromatic hydrocarbons, chlorohydrocarbons, glycol ethers, nitriles, esters, and dipolar aprotic solvents, such as dimethyl formamide, dimethyl sulfone, tetramethylene sulfone, tetramethyl urea, and N-methylpyrroli-done. [Pg.200]

The use of non-aqueous media offered new attractive possibilities for the analysis of hydrophobic compounds, which are often difficult to be analyzed due to their low solubility in aqueous media. Selectivities that are difficult to be obtained in aqueous buffers can be easily obtained using non-aqueous systems, due to larger differences in the ionized—unionized equilibrium for two closely related substances in non-aqueous solvents compared to aqueous solvents. Organic solvents such as methanol, ACN, ethanol, formamide, dimethyl formamide. [Pg.279]

Reductions with zinc are carried out in aqueous [160 as well as anhydrous solvents [163 and at different pHs of the medium. The choice of the reaction conditions is very important since entirely different results may be obtained under different conditions. While reduction of aromatic nitro groups in alkali hydroxides or aqueous ammonia gives hydrazo compounds, reduction in aqueous ammonium chloride gives hydroxylamines, and reduction in acidic medium amines (p. 73). Of organic solvents the most efficient seem to be dimethyl formamide [164 and acetic anhydride [755]. However, alcohols have... [Pg.28]

Solid Mo02Br2(DMF)2 melts at 139-141°C with decomposition. The IR spectrum, taken as a KBr dispersion, has characteristic bands for i moO 903 and 940 cm The NMR spectrum in acetone-t/g exhibits signals at S 3.03 (s, 3H, CHa), 3.22 (s, 3H, CH3), 8.26 (s, IH, CH). The complex is insoluble in hexane and diethyl ether and is soluble in methanol, ethanol, dichloromethane, chloroform, acetone, dimethyl formamide, and dimethyl sulfoxide. It is stable in air at room temperature and can be manipulated without special care. This product is specially useful for the synthesis of a number of adducts with pyridine and related bases, since the dimethyl formamide displaced can be readily removed by washing with most common organic solvents. [Pg.52]

Its solubility is poor in common organic solvents and water but readily soluble in dipolar aprotic solvents such as dimethyl formamide (DMF), dimethyl sulfoxide (DMSO) and N-Methyl pyrrolidinone (NMP). It is usually recrystallized from water containing acid. It may also be recrystallized from DMF or NMP [223, 224]. [Pg.129]

Variation of the fluorine-19 chemical shift on association has been used to determine solvent effects and basicities28. Muller29 has examined the chemical shifts of 6,6,6-trifluoro-l-hexanol (TFH) in mixtures of water and organic liquids such as acetone, dioxane, THF, ethylene glycol, 2-methoxyethane, 1,2-dimethoxyethane, methanol, r-butanol, dimethyl-formamide and dimethyl sulphoxide. Typical plots are shown in Figures 2 and 3. Solvents... [Pg.275]

Many of the remarks made in the previous section concerning fibres can be applied to the analysis of plastics. Some polymers are soluble in organic solvents and samples may be prepared for direct aspiration into a flame in this way, e.g. MIBK is a suitable solvent for polyesters, polystyrene, polysiloxanes, cellulose acetate and butyrate dimethyl formamide for polyacrylonitrile, dimethyl acetamide for polycarbonates and polyvinyl chloride cyclohexanone for polyvinyl chloride and polyvinyl acetate formic acid for polyamides and methanol for polyethers. These organic solutions may alternatively be injected into a graphite furnace. Otherwise, polymers may be wet or dry ashed and the resultant ash dissolved in acid. An approach which is attracting increasing interest is the direct insertion of solid samples into a graphite furnace. [Pg.430]

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]

The density of sucrose is 1.5879 g/cm . The linear expansion coefficient ranges from 0.0028 to 0.0050 percent, depending on the axis. Characteristic infrared (IR) absorption bands occur at 1010, 990, 940, 920, 870, 850 cm (sharp), and at 680, 580 cm" (broad). The specific heat of crystalline sucrose is 415.98 J/mol at 20°C. The dipole moment is 2.8 x 10" cm (8.3D). Sucrose is readily soluble in water and the solubility increases with the rise in temperature. It is sparingly soluble in alcohol but moderately soluble in organic solvents, such as dimethyl formamide, p5nidine, and dimethyl sulfoxide. [Pg.167]

The effect of the solvent on the kinetics of organic reactions has been studied in detail for the reactions of a host of model compounds, and for some polymerizations. Several generalizations are readily apparent. The most powerful solvents, i.e, those giving the fastest reaction rate, are often those which may be considered to function as mild catalysts themselves. The dipoles in h hly polar solvents such as dimethyl formamide or dimethyl sulphoxide may actually function as weak acids or bases, catalysing the reactions. In contrast, solvents of intermediate polarity may complex the active hydrogen compound to such an extent (at least at low to moderate temperatures) that they shield it from reaction, thus retarding the reaction. Solvents of very low polarity may permit faster reactions in these cases. For example, the reaction between... [Pg.481]


See other pages where Organic solvents dimethyl formamide is mentioned: [Pg.171]    [Pg.53]    [Pg.56]    [Pg.164]    [Pg.666]    [Pg.268]    [Pg.68]    [Pg.478]    [Pg.147]    [Pg.341]    [Pg.355]    [Pg.50]    [Pg.1008]    [Pg.60]    [Pg.60]    [Pg.469]    [Pg.498]    [Pg.474]    [Pg.39]    [Pg.14]    [Pg.547]    [Pg.320]    [Pg.207]    [Pg.362]    [Pg.486]    [Pg.343]    [Pg.577]    [Pg.117]    [Pg.429]    [Pg.101]    [Pg.164]    [Pg.494]    [Pg.3263]    [Pg.95]    [Pg.469]    [Pg.337]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Dimethyl formamide

Dimethyl solvents

Formamid

Formamidate

Formamide

Formamides

© 2024 chempedia.info