Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic molecule-mineral surface

Collectors ndFrothers. Collectors play a critical role ia flotation (41). These are heteropolar organic molecules characterized by a polar functional group that has a high affinity for the desired mineral, and a hydrocarbon group, usually a simple 2—18 carbon atom hydrocarbon chain, that imparts hydrophobicity to the minerals surface after the molecule has adsorbed. Most collectors are weak acids or bases or their salts, and are either ionic or neutral. The mode of iateraction between the functional group and the mineral surface may iavolve a chemical reaction, for example, chemisorption, or a physical iateraction such as electrostatic attraction. [Pg.412]

The great importance of minerals in prebiotic chemical reactions is undisputed. Interactions between mineral surfaces and organic molecules, and their influence on self-organisation processes, have been the subject of much study. New results from Szostak and co-workers show that the formation of vesicles is not limited to one type of mineral, but can involve various types of surfaces. Different minerals were studied in order to find out how particle size, particle shape, composition and charge can influence vesicle formation. Thus, for example, montmorillonite (Na and K10), kaolinite, talc, aluminium silicates, quartz, perlite, pyrite, hydrotalcite and Teflon particles were studied. Vesicle formation was catalysed best by aluminium solicate, followed by hydrotalcite, kaolinite and talcum (Hanczyc et al., 2007). [Pg.273]

Clay minerals or phyllosilicates are lamellar natural and synthetic materials with high surface area, cation exchange and swelling properties, exfoliation ability, variable surface charge density and hydrophobic/hydrophilic character [85], They are good host structures for intercalation or adsorption of organic molecules and macromolecules, particularly proteins. On the basis of the natural adsorption of proteins by clay minerals and various clay complexes that occurs in soils, many authors have investigated the use of clay and clay-derived materials as matrices for the immobilization of enzymes, either for environmental chemistry purpose or in the chemical and material industries. [Pg.454]

The effects of organic molecules and phosphate on the adsorption of acid phosphatase on various minerals, and kaolinite in particular, have been investigated by Huang et al. [97]. The Langmuir affinity constant for AcP adsorption by kaolinite follows the series tartrate (K — 97.8) > phosphate (K= 48.6) > oxalate (K — 35.6) > acetate (K= 13.4). At low concentration, acetate even promoted the adsorption of acid phosphatase. It was considered that competitive interactions between anionic adsorbates can occur directly through competition for surface sites and indirectly through effects of anion adsorption on the surface charge and protonation. [Pg.456]

Zielke RC, Pinnavaia TJ, Mortland MM (1989) Adsorption and reactions of selected organic molecules on clay mineral surfaces. In Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Soil Science Society of America, Madison, WI, pp 81-97... [Pg.174]

KoC is an important parameter which describes the potential for movement or mobility of pesticides in soil, sediment and groundwater. Because of the structural complexity of these agrochemical molecules, the above simple relationship which considers only the chemical s hydrophobicity may fail for polar and ionic compounds. The effects of pH, soil properties, mineral surfaces and other factors influencing sorption become important. Other quantities, KD (sorption partition coefficient to the whole soil on a dry weight basis) and KqM (organic matter-water partition coefficient) are also commonly used to describe the extent of sorption. K0M is often estimated as 0.56 KoC, implying that organic matter is 56% carbon. [Pg.4]

Additional Transformation Reactions. Other reactions that can be catalyzed by mineral surfaces are substitution, elimination, and addition reactions of organic molecules. Substitution and elimination are two general types of reactions that occur at saturated carbon atoms of organic molecules. Both types are initiated by nucleophilic attack however, in elimination reactions it is the basicity of the nucleophile that determine its reactivity rather than its nucleophilicity. Since mineral surfaces are expected to have both nucleophilic and basic properties, these types of reactions should also occur at mineral-water interfaces (see Chapter 22). It remains to be shown whether or not these reactions are catalyzed under environmental conditions. [Pg.15]

Kaolin Minerals. The 1 1 structures include a group of aluminosilicate minerals which are termed collectively the kaolin minerals specifically these are kaolinite, dickite, nacrite, and halloysite. The basic 1 1 layer for all of these minerals has the composition AlgSigOj-fOHJj, there is a small amount of substitution of iron for aluminum, ana fluoride for hydroxyl ion. All, except halloysite, are normally anhydrous and do not expand (as do the smectites) upon exposure to water and most organic molecules. As a result, they generally have a rather small surface area, on the order of 10 nr... [Pg.43]

Abiotic organic reactions that may be influenced by mineral surfaces include hydrolysis, elimination, substitution, redox, and polymerization. The effect of the surface may be either to promote (increase the rate of) or to inhibit (decrease the rate of) reactions that may occur in homogeneous solution. In addition, mineral surfaces may promote reactions that do not occur in homogenous solution by selectively concentrating molecules at the mineral surface... [Pg.462]

As shown in Figure 5.3, chemicals, such as iron, can be present in a rariety of species and phases that span a large size spectrum. The dissolved fraction can include inorganic complexes, organometallic molecules, and the uncomplexed ions. In the case of iron, two oxidation states are possible, so the free ion can be in the form of Fe (aq) or Fe " (aq). In the colloidal and particulate phases, iron can be present as part of a mineral (inorganic) or an organic molecule. Within the particulate phase, a distinction is often made between the fraction that is adsorbed, usually electrostatically as an ion, onto the surface and the fraction that is covalently bound into the crystal lattice. [Pg.104]

Clay minerals behave like Bronsted acids, donating protons, or as Lewis acids (Sect. 6.3), accepting electron pairs. Catalytic reactions on clay surfaces involve surface Bronsted and Lewis acidity and the hydrolysis of organic molecules, which is affected by the type of clay and the clay-saturating cation involved in the reaction. Dissociation of water molecules coordinated to surface, clay-bound cations contributes to the formation active protons, which is expressed as a Bronsted acidity. This process is affected by the clay hydration status, the polarizing power of the surface bond, and structural cations on mineral colloids (Mortland 1970, 1986). On the other hand, ions such as A1 and Fe, which are exposed at the edge of mineral clay coUoids, induce the formation of Lewis acidity (McBride 1994). [Pg.296]


See other pages where Organic molecule-mineral surface is mentioned: [Pg.125]    [Pg.125]    [Pg.251]    [Pg.268]    [Pg.34]    [Pg.219]    [Pg.142]    [Pg.196]    [Pg.802]    [Pg.275]    [Pg.196]    [Pg.246]    [Pg.22]    [Pg.146]    [Pg.270]    [Pg.225]    [Pg.263]    [Pg.13]    [Pg.446]    [Pg.11]    [Pg.38]    [Pg.44]    [Pg.158]    [Pg.354]    [Pg.356]    [Pg.200]    [Pg.80]    [Pg.125]    [Pg.158]    [Pg.107]    [Pg.297]    [Pg.93]    [Pg.75]    [Pg.819]    [Pg.32]    [Pg.32]    [Pg.65]    [Pg.277]    [Pg.280]    [Pg.389]   


SEARCH



Mineral surfaces

Molecules organization

Organic mineralization

Organic surfaces

Surface molecules

© 2024 chempedia.info