Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic compounds ketones

The functional groups of organic compounds (ketones, amines, nitrogen derivatives, etc.), responsible for absorption in UV/Vis are called chromophores (Table 9.1). A species formed from a carbon skeleton transparent in the near UV on which are attached one or several chromophores constitutes a chromogene. [Pg.173]

In general, nickel metallacycles react readily with carbon monoxide. In most cases, this reaction is almost immediately followed by metal reduction (Scheme 66) and formation of a cyclic carbonylated organic compound (ketone,250.314,329,346 76,127,128,130,307,320,338 thiolactone, or related heterocycles25 )... [Pg.101]

Ketones are emitted directly to the atmosphere, and their sources were discussed in detail in chapter I. In the U.K. acetone and butanone comprise about 1% and 5%, respectively, of the total anthropogenic emissions of oxygenated compounds, and 1.6% and 1.1%, respectively, of the total anthropogenic emissions of nonmethane volatile organic compounds. Ketone emissions from solvents (both industrial and personal) are substantial emissions from both gasoline- and diesel-fueled vehicles also contribute. Ketones are also formed extensively in the atmosphere in the oxidation of other compounds. Acetone, for example is formed in the OH-initiated oxidation of propane, iio-butane, iso-pentane, and neopentane and from a number of higher hydrocarbons. It is also formed in the oxidation of terpenes. The distribution, sources, and sinks of acetone in the atmosphere have been analyzed by Simpson et al. (1994). Methyl vinyl ketone is an important first generation product in the OH-initiated oxidation of isoprene. [Pg.651]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

Low-valent nitrogen and phosphorus compounds are used to remove hetero atoms from organic compounds. Important examples are the Wolff-Kishner type reduction of ketones to hydrocarbons (R.L. Augustine, 1968 D. Todd, 1948 R.O. Hutchins, 1973B) and Barton s olefin synthesis (p. 35) both using hydrazine derivatives. [Pg.97]

Ketones are a class of organic compounds that contain one or more carbonyl groups bound to two aUphatic, aromatic, or aUcycbc substituents, and are represented by the general formula... [Pg.485]

Many mercury compounds are labile and easily decomposed by light, heat, and reducing agents. In the presence of organic compounds of weak reducing activity, such as amines (qv), aldehydes (qv), and ketones (qv), compounds of lower oxidation state and mercury metal are often formed. Only a few mercury compounds, eg, mercuric bromide/77< 5 7-/7, mercurous chloride, mercuric s A ide[1344-48-5] and mercurous iodide [15385-57-6] are volatile and capable of purification by sublimation. This innate lack of stabiUty in mercury compounds makes the recovery of mercury from various wastes that accumulate with the production of compounds of economic and commercial importance relatively easy (see Recycling). [Pg.112]

Most organic compounds, including aromatic hydrocarbons, alcohols, esters, ketones, ethers, and carboxyUc acids are miscible with nitroparaffins, whereas alkanes and cycloalkanes have limited solubiUty. The lower nitroparaffins are excellent solvents for coating materials, waxes, resins, gums, and dyes. [Pg.98]

Reaction with Organic Compounds. Aluminum is not attacked by saturated or unsaturated, aUphatic or aromatic hydrocarbons. Halogenated derivatives of hydrocarbons do not generally react with aluminum except in the presence of water, which leads to the forma tion of halogen acids. The chemical stabiUty of aluminum in the presence of alcohols is very good and stabiUty is excellent in the presence of aldehydes, ketones, and quinones. [Pg.95]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

Sulfitation and Bisulfitation of Unsaturated Hydrocarbons. Sulfites and bisulfites react with compounds such as olefins, epoxides, aldehydes, ketones, alkynes, a2iridines, and episulftdes to give aHphatic sulfonates or hydroxysulfonates. These compounds can be used as intermediates in the synthesis of a variety of organic compounds. [Pg.79]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

With Unsaturated Compounds. The reaction of unsaturated organic compounds with carbon monoxide and molecules containing an active hydrogen atom leads to a variety of interesting organic products. The hydroformylation reaction is the most important member of this class of reactions. When the hydroformylation reaction of ethylene takes place in an aqueous medium, diethyl ketone [96-22-0] is obtained as the principal product instead of propionaldehyde [123-38-6] (59). Ethylene, carbon monoxide, and water also yield propionic acid [79-09-4] under mild conditions (448—468 K and 3—7 MPa or 30—70 atm) using cobalt or rhodium catalysts containing bromide or iodide (60,61). [Pg.52]

A cyanohydrin is an organic compound that contains both a cyanide and a hydroxy group on an aUphatic section of the molecule. Cyanohydrias are usually a-hydroxy nitriles which are the products of base-cataly2ed addition of hydrogen cyanide to the carbonyl group of aldehydes and ketones. The lUPAC name for cyanohydrias is based on the a-hydroxy nitrile name. Common names of cyanohydrias are derived from the aldehyde or ketoae from which they are formed (Table 1). [Pg.410]

Cyclohexanoae is miscible with methanol, ethanol, acetone, benzene, / -hexane, nitrobenzene, diethyl ether, naphtha, xylene, ethylene glycol, isoamyl acetate, diethylamine, and most organic solvents. This ketone dissolves cellulose nitrate, acetate, and ethers, vinyl resias, raw mbber, waxes, fats, shellac, basic dyes, oils, latex, bitumea, kaure, elemi, and many other organic compounds. [Pg.425]

Most organic compounds are water-insoluble. Notable exceptions are the lower molecular weight alcohols, aldehydes, and ketones, all known to be "polar" molecules. This characteristic is of importance to firefighting because the specific gravity of the compound will then be a major determinant of the suitability of water for the suppression of fires involving the chemical. [Pg.168]

Volatile organic compounds (VOCs) include organic compounds with appreciable vapor pressure. They make up a major class of air pollutants.I his class includes not only pure hydrocarbons but also partially oxidized hydrocarbons (organic acids, aldehydes, ketones), as well as organics containing chlorine, sulfur, nitrogen, or other atoms in the molecule. [Pg.1297]


See other pages where Organic compounds ketones is mentioned: [Pg.364]    [Pg.271]    [Pg.364]    [Pg.271]    [Pg.11]    [Pg.18]    [Pg.121]    [Pg.163]    [Pg.231]    [Pg.231]    [Pg.251]    [Pg.254]    [Pg.294]    [Pg.321]    [Pg.355]    [Pg.1026]    [Pg.86]    [Pg.196]    [Pg.412]    [Pg.469]    [Pg.303]    [Pg.306]    [Pg.488]    [Pg.511]    [Pg.309]    [Pg.501]    [Pg.103]    [Pg.273]    [Pg.262]    [Pg.133]    [Pg.101]    [Pg.505]    [Pg.55]    [Pg.92]    [Pg.786]   
See also in sourсe #XX -- [ Pg.179 , Pg.474 , Pg.478 , Pg.478 ]

See also in sourсe #XX -- [ Pg.474 , Pg.478 , Pg.478 , Pg.479 ]

See also in sourсe #XX -- [ Pg.475 , Pg.479 , Pg.479 ]

See also in sourсe #XX -- [ Pg.172 , Pg.173 , Pg.174 ]

See also in sourсe #XX -- [ Pg.1244 , Pg.1246 ]




SEARCH



Ketones compounds

© 2024 chempedia.info