Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic compounds, electrode oxidation

As described in Section 4.1.2, nucleophilic organic compounds are oxidized at the electrode. Some oxidizable organic compounds are listed in Table 8.7 with the potentials of the first oxidation step in non-aqueous solvents. By using a solvent of weak basicity and a supporting electrolyte that is difficult to oxidize, we can expand the potential window on the positive side and can measure oxidations of dif-... [Pg.255]

Anodic processes involving reactions of mercury ions with organic compounds -r Oxidation of mercury electrodes increases with increasingly positive potentials. Resulting mercury (I) or (II) ions can react with organic compounds (X) or their anions (X-) present in the solution following the sequence ... [Pg.469]

Vertes G, Horanyi G (1974) Some problems of the kinetics of the oxidation of organic compounds at oxide-covered nickel electrodes. J Electroanal Chem 52 47-53... [Pg.400]

The major types of interferences in ASV procedures are overlapping stripping peaks caused by a similarity in the oxidation potentials (e.g., of the Pb, Tl, Cd, Sn or Bi, Cu, Sb groups), the presence of surface-active organic compounds that adsorb on tlie mercury electrode and inhibit the metal deposition, and the formation of intermetallic compounds (e.g., Cu-Zn) which affects the peak size and position. Knowledge of these interferences can allow prevention through adequate attention to key operations. [Pg.79]

Beden, B. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes 22... [Pg.600]

The equilibrium (1) at the electrode surface will lie to the right, i.e. the reduction of O will occur if the electrode potential is set at a value more cathodic than E. Conversely, the oxidation of R would require the potential to be more anodic than F/ . Since the potential range in certain solvents can extend from — 3-0 V to + 3-5 V, the driving force for an oxidation or a reduction is of the order of 3 eV or 260 kJ moR and experience shows that this is sufficient for the oxidation and reduction of most organic compounds, including many which are resistant to chemical redox reagents. For example, the electrochemical oxidation of alkanes and alkenes to carbonium ions is possible in several systems... [Pg.157]

In such a synthesis the lengths of the pulses are variable as well as the potentials of the square wave. Recently a potential-time profile has been used to maintain the activity of an electrode during the oxidation of organic compounds (Clark et al., 1972) at a steady potential the current for the oxidation process was observed to fall, but a periodic short pulse to cathodic potentials was sufficient to prevent this decrease in electrode activity. [Pg.165]

The role of the pH of the medium in the electrode reactions of organic compounds in aqueous solutions is well understood and has been recently reviewed in detail (Zuman, 1969). In particular, our understanding of this parameter is due to the large number of polarographic investigations where it has been found that the half-wave potential, the limiting current and the shape of the wave for an oxidation or reduction process may all be dependent on the acidity of the medium. [Pg.178]

Oxidation of Organic Compounds at the Nickel Hydroxide Electrode H.-J. Schafer... [Pg.163]

Beden, C. Lamy, and J.-M. Leger, Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes, in Modem Aspects of Electrochemistry, Vol. 22, Ed. by J. O M. Bockris, B. E. Conway, and R. E. White, Plenum Press, New York, 1992, pp. 97-264. [Pg.116]

In the present chapter we want to look at certain electrochemical redox reactions occurring at inert electrodes not involved in the reactions stoichiometrically. The reactions to be considered are the change of charge of ions in an electrolyte solution, the evolution and ionization of hydrogen, oxygen, and chlorine, the oxidation and reduction of organic compounds, and the like. The rates of these reactions, often also their direction, depend on the catalytic properties of the electrode employed (discussed in greater detail in Chapter 28). It is for this reason that these reactions are sometimes called electrocatalytic. For each of the examples, we point out its practical value at present and in the future and provide certain kinetic and mechanistic details. Some catalytic features are also discussed. [Pg.261]

Reactions of partial electrochemical oxidation are of considerable interest in the electrosynthesis of various organic compounds. Thus, at gold electrodes in acidic solutions, olefins can be oxidized to aldehydes, acids, oxides, and other compounds. A good deal of work was invested in the oxidation of aromatic compounds (benzene, anthracene, etc.) to the corresponding quinones. To this end, various mediating redox systems (e.g., the Ce /Ce system) are employed (see Section 13.6). [Pg.283]

Simple Oxides of Base Metals Electrodes of lead dioxide, Pb02, which in contrast to other base-metal oxides are stable in sulfuric acid are an example for a simple oxide system. In a number of cases, this electrode serves as the anode in the electrosynthesis of organic compounds in acid media. [Pg.544]

Sandorfy, C. Vibrational Spectra of Hydrogen Bonded Systems in the Gas Phase. 120, 41-84 (1984). Schafer, H.-J. Oxidation of Organic Compounds at the Nickel Hydroxide Electrode. 142, 101-129 (1987). [Pg.185]

Beden B, Lamy C, Leger JM. 1992. Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes. In Bockris JO M, Conway BE, White RE, eds. Modem Aspects of Electrochemistry. Volume 22. New York Plenum Press, p 97-264. [Pg.199]

Back electron transfer takes place from the electrogenerated reduc-tant to the oxidant near the electrode surface. At a sufficient potential difference this annihilation leads to the formation of excited ( ) products which may emit light (eel) or react "photochemical ly" without light (1,16). Redox pairs of limited stability can be investigated by ac electrolysis. The frequency of the ac current must be adjusted to the lifetime of the more labile redox partner. Many organic compounds have been shown to undergo eel (17-19). Much less is known about transition metal complexes despite the fact that they participate in fljjany redox reactions. [Pg.160]

Many transition metal compounds with a high oxidation state are strong oxidants and are frequently used in synthetic organic chemistry. These principles of catalysis using such a class of metal complexes have been applied with success to the electrooxidation of organics, the electrode serving to regenerate the oxidant in the presence of substrates. [Pg.498]

Haapakka and Kankare have studied this phenomenon and used it to determine various analytes that are active at the electrode surface [44-46], Some metal ions have been shown to catalyze ECL at oxide-covered aluminum electrodes during the reduction of hydrogen peroxide in particular. These include mercu-ry(I), mercury(II), copper(II), silver , and thallium , the latter determined to a detection limit of <10 10 M. The emission is enhanced by organic compounds that are themselves fluorescent or that form fluorescent chelates with the aluminum ion. Both salicylic acid and micelle solubilized polyaromatic hydrocarbons have been determined in this way to a limit of detection in the order of 10 8M. [Pg.229]

In contrast to acidic electrolytes, chemical dissolution of a silicon electrode proceeds already at OCP in alkaline electrolytes. For cathodic potentials chemical dissolution competes with cathodic reactions, this commonly leads to a reduced dissolution rate and the formation of a slush layer under certain conditions [Pa2]. For potentials slightly anodic of OCP, electrochemical dissolution accompanies the chemical one and the dissolution rate is thereby enhanced [Pa6]. For anodic potentials above the passivation potential (PP), the formation of an anodic oxide, as in the case of acidic electrolytes, is observed. Such oxides show a much lower dissolution rate in alkaline solutions than the silicon substrate. As a result the electrode surface becomes passivated and the current density decreases to small values that correspond to the oxide etch rate. That the current density peaks at PP in Fig. 3.4 are in fact connected with the growth of a passivating oxide is proved using in situ ellipsometry [Pa2]. Passivation is independent of the type of cation. Organic compounds like hydrazin [Sul], for example, show a behavior similar to inorganic ones, like KOH [Pa8]. Because of the presence of a passivating oxide the current peak at PP is not observed for a reverse potential scan. [Pg.49]

The oxidation of toluene to benzaldehyde (max. yield 98.8%) can be performed in a Ce(Cl04)3-HCl04-(Pt/Ti-Cu) system by using the in-cell method in an undivided cell [28]. Indirect electrooxidations of organic compounds with Ce(IV) are listed in Table 12 [221-230]. For the electrogeneration of Ce(IV), platinized titanium or platinum oxide-on-titanium electrodes are known to be suitable for continuous oxidation of Ce(III) in perchloric acid. [Pg.525]

The system, which is of practical importance (Edison storage battery, electrocatalysis in organic synthesis), is the NiOOH Ni(OH)2 couple (electrode). Somewhat surprisingly - since it is a widely studied and applied electrode - the mechanism and the true nature of the oxidized species are not fully understood yet [1, 2, 16]. The formal potential depends on the KOH concentration and is ca. 1.3 V. It follows that it is unstable in aqueous solutions and is also an oxidizing agent for various organic compounds. [Pg.500]


See other pages where Organic compounds, electrode oxidation is mentioned: [Pg.213]    [Pg.47]    [Pg.48]    [Pg.227]    [Pg.206]    [Pg.290]    [Pg.555]    [Pg.354]    [Pg.614]    [Pg.82]    [Pg.986]    [Pg.178]    [Pg.552]    [Pg.585]    [Pg.699]    [Pg.240]    [Pg.986]    [Pg.561]    [Pg.229]    [Pg.913]    [Pg.24]    [Pg.222]    [Pg.148]    [Pg.153]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Organic compounds, oxidation

Organic oxidant

Organic oxidation

Oxidation electrode

© 2024 chempedia.info