Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic bases, selectivity

In the separations (2) and (3) above, it is often advisable to dissolve the original mixture in a water-insoluble solvent. Select a solvent which will dissolve the entire mixture, and then shake the solution with either (i) dil. NaOH or (ii) dil. HCl. Separate the aqueous layer, and to it add either (i) dil. HCl or (ii) dil. NaOH to liberate the organic acid or the organic base, as the case may be. The non-aqueous layer now contains the neutral component. Reextract this layer with either (i) dil. NaOH or (ii) dil. HCl to ensure removal of traces of the non-neutral component. [Pg.400]

Orthoesters. The value of cycHc orthoesters as intermediates for selective acylation of carbohydrates has been demonstrated (73). Treatment of sucrose with trimethylorthoacetate and DMF in the presence of toluene-/)-sulfonic acid followed by acid hydrolysis gave the 6-0-acetylsucrose as the major and the 4-0-acetylsucrose [63648-80-6] as the minor component. The latter compound underwent acetyl migration from C-4 to C-6 when treated with an organic base, such as / fZ-butylamine, in DMF to give sucrose 6-acetate in >90% yield (74). When the kinetic reagent 2,2-dimethoxyethene was used,... [Pg.34]

A variety of inorganic (31,87) and organic bases have been added to the catalyst to improve selectivity. The effectiveness of organic bases is very sensitive to structure. Morpholine is an effective inhibitor, more so than /Si-melhylmorphollne > N-elhylmorpholine > 3,5-dimethylmorpholine (55). Piperazine is effective, but ethanolamine and ethylenediamine are poisons. [Pg.108]

For this specific task, ionic liquids containing allcylaluminiums proved unsuitable, due to their strong isomerization activity [102]. Since, mechanistically, only the linkage of two 1-butene molecules can give rise to the formation of linear octenes, isomerization activity in the solvent inhibits the formation of the desired product. Therefore, slightly acidic chloroaluminate melts that would enable selective nickel catalysis without the addition of alkylaluminiums were developed [104]. It was found that an acidic chloroaluminate ionic liquid buffered with small amounts of weak organic bases provided a solvent that allowed a selective, biphasic reaction with [(H-COD)Ni(hfacac)]. [Pg.247]

Finally we mention in this section the non-catalytic selective bromination of aniline by the application of a zeolite pre-loaded with Bt2 as a slow release reagent (ref. 27). Aniline, dissolved in CCI4 was treated with Br2 adsorbed onto various zeolites and zeolite CaA was found to be most selective for monosubstitution (92%). The addition of organic bases improved the performance, probably due to scavenging of HBr. Also the toluidines could be monobrominated with this system with >95% selectivity. [Pg.212]

Solvent selectivity is seen as the factor that distinguishes individual solvents that have solvent strengths suitable for separation. In reality, separations result from the competition between the mobile and stationary phases for solutes based on the differences of all intermolecular interactions with the solute in both phases. Solvents can be organized on selectivity scales that are useful for initial solvent selection, but in a chromatographic separation the properties of the stationary phase must be taken into consideration. Methods that attempt to model chromatographic separation need to consider simultaneously mobile and stationary phase properties [38]. [Pg.78]

A diverse coordination chemistry is emerging for bismuth(III) made possible by a spacious and flexible coordination environment, allowing for coordination numbers in excess of 9. Although the available data are still limited, distinct trends are evident, and the polymeric solid-state features that may be assumed on the basis of high coordination numbers can be mediated by appropriate selection of organic-based ligands. The unusual structural arrangements observed for many types of complex may prove to be representative as the number of examples of such systems increases. [Pg.349]

The reactions described show that sulfur monochloride is an important reagent for the synthesis of heterocycles with various numbers of sulfur atoms and even without sulfur. An important feature of this reagent is that it can add not only two sulfur atoms to the molecule, as might be expected, but also one, three, four, five or even more atoms, and the structure of the final compound often depends on its stability. Recent developments in the use of sulfur monochloride include the discovery of its ability to form complexes with organic bases and of the significant difference in reactivity of these complexes from S2CI2. A selective synthesis of particular heterocycles requires accurate conditions (temperature, solvent, catalyst and base). [Pg.224]

The direct potentiometric determination (using a cation-selective membrane electrode) of procaine and some physiologically active amines in pharmaceuticals has been reported [70]. The sensing membrane was formed from PVC plasticized with dibutyl phthalate, and contained 0.1 mM trioctyloxybenzene-sulfonic acid in dibutyl phthalate. The reference solution was a mixture of 1 mM solution of the organic base and hydrochloric acid. Response was found to be linear over a wide concentration range, and the method was highly selective. [Pg.422]

Before using the ILs, it must be remembered that they can be dramatically altered by the presence of impurities. Impurities can change the nature of these compounds. The main contaminants are halide anions and organic bases, arising from unreacted starting material and water. The influence of water and chloride anion on the viscosity and density of ILs has already been extensively discussed by many authors [56]. The hydrophilic/hydrophobic behavior is important for the solvation properties of ILs as it is necessary to dissolve reactants, but it is also relevant for the separation and extraction processes and in electrochemical processes. Furthermore, the water content of ILs can affect the rates and selectivity of reaction (this problem was not discussed in this chapter) and can be taken as a cosolvent in extraction... [Pg.58]

The handling and disposal problems associated with the use of liquid solvent extractors have resulted in increased attention to the separation and preconcentration of organic compounds in water by collection in synthetic polymers followed by elution with an organic solvent (2). For example, selective collection and concentration of organic bases on methylacrylic ester resin from dilute water samples have been reported (3). Such collection techniques are especially well-suited to flow-injection measurement techniques. In this study, ionizable organic analytes such as salicylic acid and 8-hydroxyquinoline (oxine) were extracted into a polymer and then back extracted by an aqueous solution. Amperometric measurement using a flow-injection technique was employed to monitor the process. [Pg.344]

Using the criteria discussed above, we wish to select the easiest method of calculation which is both feasible to apply to the molecules of interest, and whose results are sufficiently accurate to describe the relevant experimental results. We have found it convenient to organize this selection process into a flow chart, which is given in Fig. 1. Starting at the top, one makes a sequence of decisions based upon the criteria for feasibility and accuracy. Decisions about the relative ease of different methods are not made explicitly they are implicit in the organization of the flow chart. [Pg.63]

Formation of Salts. Amino acids have certain characteristics of both organic bases and organic acids because they are amphoteric. As amines, tile amino acids form stable salts, such as hydrochlorides or aromatic sulfonic acid salts. These are used as selective predpitants of certain amino acids. As organic acids, the annuo acids form complex salts with heavy metals, the less soluble salt being used for amino acid separation. [Pg.79]

Is self-organization, based on self-reproduction and selection, an inevitable process, whose prerequisites and consequences can be found in natural systems ... [Pg.120]


See other pages where Organic bases, selectivity is mentioned: [Pg.206]    [Pg.138]    [Pg.300]    [Pg.6]    [Pg.51]    [Pg.16]    [Pg.170]    [Pg.126]    [Pg.110]    [Pg.73]    [Pg.438]    [Pg.99]    [Pg.450]    [Pg.59]    [Pg.331]    [Pg.316]    [Pg.8]    [Pg.108]    [Pg.235]    [Pg.357]    [Pg.16]    [Pg.97]    [Pg.202]    [Pg.607]    [Pg.718]    [Pg.256]    [Pg.24]    [Pg.201]    [Pg.220]    [Pg.977]    [Pg.805]    [Pg.3]    [Pg.206]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Organic bases

Organic selectivity

© 2024 chempedia.info