Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic aldol condensations

Kinetic template effects have been postulated in more typical organic aldol condensations, where metals such as lithium and zinc are likely to coordinate both the enolate or enamine nucleophile and the aldehyde in the transition state. The examples shown in Schemes 58184 and 59185 are illustrative of these reactions and the degree of selectivity obtained. The carboxylation of ketones and nitroalkanes by methyl magnesium carbonate to produce P-keto acids and a-nitro acids respectively provides early examples of similar reactions (Scheme 60).186 187 See also Section 61.1.4.4. [Pg.450]

Alkoxo complexes CpTiX(OR)2 (Scheme 754) have been used as catalysts for organic aldol condensation reactions in the synthesis of stereogenic centers.1909... [Pg.657]

Aldol condensations are one of the fundamental carbon-carbon bond forming processes of synthetic organic chemistry Furthermore because the products of these aldol con densations contain functional groups capable of subsequent modification access to a host of useful materials is gamed... [Pg.773]

Diacetone Alcohol. Diacetone alcohol (DAA) (4-hydroxy-4-methyl-2-pentanone) is a colorless, mild smelling Hquid which is completely miscible with water and most organic solvents. It is the simplest aldol condensation product of acetone, and because of its keto-alcohol functionahes it has special utility in the coatings industry where it is used to dissolve cellulose acetate to give solutions with high tolerance for water (115). [Pg.493]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

Figure 8-6. The Hoechst AG process for producing 2-ethylhexanol from n-butyraldehyde (1) Aldol condensation reactor, (2) separation (organic phase from liquid phase), (3) hydrogenation reactor, (4) distillation column. Figure 8-6. The Hoechst AG process for producing 2-ethylhexanol from n-butyraldehyde (1) Aldol condensation reactor, (2) separation (organic phase from liquid phase), (3) hydrogenation reactor, (4) distillation column.
During 1989-93 lithium perchlorate iethyl ether (LiC104 EtiO, LP-DE) was studied as a reaction medium in organic synthesis when it was observed that cycloadditions, sigmatropic rearrangements, Michael additions and aldol condensations carried out in LP-DE occurred quickly and selectively under mild reaction conditions [33]. In addition, LP-DE allowed the reaction and subsequent work-up to be carried out under essentially neutral conditions. [Pg.268]

Paterson, I., Delgado, O., Florence, G.J., Lyothier, I., Scott, J.P., Sereinig, N. (2003) 1,6-Asymmetric Induction in Boron-Mediated Aldol Condensations Application to a Practical Total Synthesis of (-F)-Discodermolide. Organic Letters, 5, 35-38. [Pg.192]

Examples of commercially applied solid base catalysts are much fewer than for solid acids. Nevertheless, much attention is currently focused on the development of novel solid base catalysts for classical organic reactions such as aldol condensations, Michael additions, and Knoevenagel condensations, to name but a few. [Pg.44]

Circulation flow system, measurement of reaction rate, 28 175-178 Clausius-Clapeyron equation, 38 171 Clay see also specific types color tests, 27 101 compensation behavior, 26 304-307 minerals, ship-in-bottle synthesis, metal clusters, 38 368-379 organic syntheses on, 38 264-279 active sites on montmorillonite for aldol reaction, 38 268-269 aldol condensation of enolsilanes with aldehydes and acetals, 38 265-273 Al-Mont acid strength, 38 270-271, 273 comparison of catalysis between Al-Mont and trifluorometfaanesulfonic acid, 38 269-270... [Pg.76]

A further step towards improved selectivity in aldol condensations is found in the work of David A. Evans. The work of Evans [3a] [14] is based in some early observations from Meyers laboratory [15] and the fact that boron enolates may be readily prepared under mild conditions from ketones and dialkylboron triflates [16]. Detailed investigations with Al-propionylpyrrolidine (31) indicate that the enolisation process (LDA, THE) affords the enolate 32 with at least 97% (Z>diastereoselection (Scheme 9.8). Finally, the observation that the inclusion of potential chelating centres enhance aldol diastereoselection led Evans to study the boron enolates 34 of A(-acyl-2-oxazolidones (33), which allow not only great diastereoselectivity (favouring the 5yn-isomer) in aldol condensations, but offer a possible solution to the problem of enantioselective total syntheses (with selectivities greater than 98%) of complex organic molecules (see below, 9.3.2), by using a recyclisable chiral auxiliary. [Pg.239]

Finally, another possibility is to design enantioselective syntheses by using external chiral auxiliaries either in catalytic or in stoichiometric quantities [21], Since these strategies are nowadays of great interest in organic synthesis, we will consider here some of the most recent results achieved in enantioselective aldol condensations, as well as in the asymmetric epoxidation and hydroxylation of olefmic double bonds. [Pg.246]


See other pages where Organic aldol condensations is mentioned: [Pg.477]    [Pg.477]    [Pg.1014]    [Pg.2]    [Pg.84]    [Pg.620]    [Pg.344]    [Pg.485]    [Pg.32]    [Pg.1014]    [Pg.339]    [Pg.363]    [Pg.391]    [Pg.27]    [Pg.203]    [Pg.244]    [Pg.748]    [Pg.195]    [Pg.57]    [Pg.1032]    [Pg.2]    [Pg.108]    [Pg.78]    [Pg.173]    [Pg.1125]    [Pg.188]    [Pg.44]    [Pg.520]    [Pg.59]    [Pg.366]    [Pg.433]    [Pg.748]    [Pg.62]    [Pg.185]    [Pg.520]    [Pg.23]   
See also in sourсe #XX -- [ Pg.99 , Pg.103 ]




SEARCH



Aldol condensate

Aldol condensation

Condensations aldol condensation

© 2024 chempedia.info