Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical microscopy applications

Ultrafiltration utilizes membrane filters with small pore sizes ranging from O.OlS t to in order to collect small particles, to separate small particle sizes, or to obtain particle-free solutions for a variety of applications. Membrane filters are characterized by a smallness and uniformity of pore size difficult to achieve with cellulosic filters. They are further characterized by thinness, strength, flexibility, low absorption and adsorption, and a flat surface texture. These properties are useful for a variety of analytical procedures. In the analytical laboratory, ultrafiltration is especially useful for gravimetric analysis, optical microscopy, and X-ray fluorescence studies. [Pg.347]

X-ray difl raaion (structure grain size preferred orientation stress) Scanning laser microscopy Optical microscopy Oocnl thickness topography nucleation general morphology internal oxidation) l.R. spectroscopy (specialised analysis and applications)... [Pg.31]

Until the advent of modem physical methods for surface studies and computer control of experiments, our knowledge of electrode processes was derived mostly from electrochemical measurements (Chapter 12). By clever use of these measurements, together with electrocapillary studies, it was possible to derive considerable information on processes in the inner Helmholtz plane. Other important tools were the use of radioactive isotopes to study adsorption processes and the derivation of mechanisms for hydrogen evolution from isotope separation factors. Early on, extensive use was made of optical microscopy and X-ray diffraction (XRD) in the study of electrocrystallization of metals. In the past 30 years enormous progress has been made in the development and application of new physical methods for study of electrode processes at the molecular and atomic level. [Pg.468]

The DBSA-system is also applicable for the dithioacetalization of aldehdyes and ketones with 1,2-ethanedithiol to give the corresponding dithioacetals (Scheme 5.4, d). Increasing the reaction temperature decreases the yield of the products. Interestingly, increases in the concentration of the surfactant also decrease the yield of products formed, while shortening the alkyl chain of the surfactant abolishes its catalytic activity. Optical microscopy shows the formation of micelles, which are proposed to form hydrophobic environments and decrease the effective concentration of water and facilitate the dehydrative condensation reactions. [Pg.154]

In this chapter we report recent analytical applications of CL imaging for the detection of biospecific reactions in macrosamples such as microtiter plates of different format (96 or 384 wells), filter membranes and irregular surfaces represented by specimens related to the cultural heritage, and results obtained when the CCD detector is coupled with optical microscopy for enzyme localization, immunohistochemical reactions, and complementary DNA (cDNA) detection (Table 1). [Pg.476]

Transmission electron microscopy (TEM) is a powerful and mature microstructural characterization technique. The principles and applications of TEM have been described in many books [16 20]. The image formation in TEM is similar to that in optical microscopy, but the resolution of TEM is far superior to that of an optical microscope due to the enormous differences in the wavelengths of the sources used in these two microscopes. Today, most TEMs can be routinely operated at a resolution better than 0.2 nm, which provides the desired microstructural information about ultrathin layers and their interfaces in OLEDs. Electron beams can be focused to nanometer size, so nanochemical analysis of materials can be performed [21]. These unique abilities to provide structural and chemical information down to atomic-nanometer dimensions make it an indispensable technique in OLED development. However, TEM specimens need to be very thin to make them transparent to electrons. This is one of the most formidable obstacles in using TEM in this field. Current versions of OLEDs are composed of hard glass substrates, soft organic materials, and metal layers. Conventional TEM sample preparation techniques are no longer suitable for these samples [22-24], Recently, these difficulties have been overcome by using the advanced dual beam (DB) microscopy technique, which will be discussed later. [Pg.618]

Optical lithography, in compound semiconductor processing, 22 193 Optically active citronellol, 24 506 Optically transparent porous gel-silica, 23 75, 76 Optical materials nonlinear, 17 442-460 second-order nonlinear, 17 444—453 third-order nonlinear, 17 453-457 Optical memory, photochromic material application, 6 602 Optical microscopy, 16 467-487 history of, 16 467-469 in kinetic studies, 14 622 liquid immersion, 15 186 Optical mode density, 14 849, 850-852 Optical multichannel analyzers (OMAs), 23 143... [Pg.649]

An application of STM and AFM of particular interest is the in situ study of electrochemistry. Because the solid surface of interest is immersed in an electrolyte, no other microscopy method can access the liquid-solid interface except optical microscopy (which has a resolution of about 0.5 xm). The dif-... [Pg.323]

In terms of beam delivery, the DLW method is based on optical microscopy, confocal microscopy [4,6,13] and laser tweezers [14] (for reviews on laser tweezers see [ 15,16]). These techniques allow for a high spatial 3D resolution of a tightly focused laser beam with optical exposure of micrometric-sized volumes via linear and nonlinear absorption. In addition, mechanical and thermal forces can be exerted upon objects as small as 10 nm molecular dipolar alignment can be controlled by polarization of light in volumes of with submicrometric cross-sections. This circumstance widens the field of applications for laser nano- and microfabrication in liquid and solid materials [17-22]. [Pg.162]

Sherar, M. D., Noss, M. B., and Foster, F. S. (1987). Ultrasound backscatter microscopy images the internal structure of living tumour spheroids. Nature 330,493-5. [174] Shimada, H. (1987). Propagation of multi-mode ultrasonic pulses in non-destructive material evaluation. In Ultrasonic spectroscopy and its application to Materials science (ed. Y. Wada), pp. 50-6. Ministry of Education, Science and Culture, Japan. [148] Shotton, D. M. (1989). Confocal scanning optical microscopy and its applications for biological specimens. J. Cell. Sci. 94,175-206. [177,200]... [Pg.341]

Shotton, D. M. (1989) Confocal scanning optical microscopy and its applications for biological specimens J Cell Sci 94, 175-206... [Pg.282]

DePalma and Tillman investigated self-assembled monolayer films from three silanes, tridecafluorooctyltrichlorosilane, undecyltrichlorosilane, and octadecyl-trichlorosilane, on silicon, a popular model substrate for such studies with great relevance to potential semiconductor coating applications. They characterized the films by ellipsometry and contact angle measurements (data for trideca-fluorooctyltrichlorosilane are included in Table 1), but more usefully from an applicational viewpoint, they carried out friction and wear measurements with a pin-on-disk device where the silicon wafer substrate, coated with monolayer, is moved under a spherical glass slider. Optical microscopy was used to assess wear. Table 2 summarizes DePalma and Tillman s data and their comparison with the classical self-assembled monolayer friction studies of Levine and Zisman [18]. [Pg.71]

Optical microscopy is often the first step in surface analysis, since it is fast and easy to perform. It can be an aid in selecting the area of interest on a sample for further analysis with more complex methods. The application of classical optical microscopy to surface science is, however, limited because the maximum lateral resolution is in the order of the optical wavelength ( 500 nm). For opaque solids, the light penetrates into the material, giving optical microscopy a poor surface sensitivity. In addition, the depth of field is limited which calls for flat, polished surfaces or allows only plane sections of the sample to be viewed. [Pg.162]


See other pages where Optical microscopy applications is mentioned: [Pg.188]    [Pg.369]    [Pg.22]    [Pg.56]    [Pg.433]    [Pg.155]    [Pg.156]    [Pg.156]    [Pg.157]    [Pg.160]    [Pg.241]    [Pg.271]    [Pg.6]    [Pg.529]    [Pg.138]    [Pg.109]    [Pg.192]    [Pg.311]    [Pg.32]    [Pg.376]    [Pg.242]    [Pg.100]    [Pg.12]    [Pg.392]    [Pg.505]    [Pg.16]    [Pg.79]    [Pg.1018]    [Pg.2322]    [Pg.111]    [Pg.65]    [Pg.1]    [Pg.23]    [Pg.132]    [Pg.80]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 ]




SEARCH



Applications of Optical Microscopy

Applications optics

Applications, microscopy

Optical microscopy

Optical microscopy, analytical method Applications

© 2024 chempedia.info