Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins metal alkyls

Because of the marked differences in reactivity of I, II, and III on palladium, Gault and co-workers prefer the metal-olefin/metal-alkyl insertion mechanism outlined above for this metal in contrast to platinum. It may be noted, incidentally, that the results described for reaction of I, II, and III on platinum would be consistent with the simplest possible mechanism of ring closure, namely through aco-diadsorption ... [Pg.153]

The next major commodity plastic worth discussing is polypropylene. Polypropylene is a thermoplastic, crystalline resin. Its production technology is based on Ziegler s discovery in 1953 of metal alkyl-transition metal halide olefin polymerization catalysts. These are heterogeneous coordination systems that produce resin by stereo specific polymerization of propylene. Stereoregular polymers characteristically have monomeric units arranged in orderly periodic steric configuration. [Pg.237]

At the second stage the decomposition of metal alkyl takes place. Metal alkyl is liable to decompose into metal alkyl and olefin causing the increased saturation of polyethylene macromolecules ... [Pg.87]

For all the olefins studied, alkyl-, fluoro-, or chloro-substituted, three binary, mononuclear species were observed. It now seems that it is a general property of Ni and Pd atom-olefin reactions at cryogenic temperatures to form complexes that have a maximum coordination of three olefin molecules per metal atom, regardless of the electronic or steric attributes of the substituent(s). As intimated previously, the absence of higher stoichiometry species, even for unsubstituted ethylene, is, most probably, the result of steric interactions (54). [Pg.149]

Palladium(II) complexes possessing bidentate ligands are known to efficiently catalyze the copolymerization of olefins with carbon monoxide to form polyketones.594-596 Sulfur dioxide is an attractive monomer for catalytic copolymerizations with olefins since S02, like CO, is known to undergo facile insertion reactions into a variety of transition metal-alkyl bonds. Indeed, Drent has patented alternating copolymerization of ethylene with S02 using various palladium(II) complexes.597 In 1998, Sen and coworkers also reported that [(dppp)PdMe(NCMe)]BF4 was an effective catalyst for the copolymerization of S02 with ethylene, propylene, and cyclopentene.598 There is a report of the insertion reactions of S02 into PdII-methyl bonds and the attempted spectroscopic detection of the copolymerization of ethylene and S02.599... [Pg.607]

The surfaces of some types of silica and alumina freed from adsorbed water contain acidic -OH groups. Ballard et al. (15) showed that these -OH groups react readily with transition metal alkyls giving stable compounds that are highly active polymerization catalysts for olefins. These systems are best described with reference to silica. [Pg.293]

The use of weakly coordinating and fluorinated anions such as B(C6H4F-4)4, B(C6F5)4, and MeB(C6F5)3 further enhanced the activities of Group 4 cationic complexes for the polymerization of olefins and thereby their activity reached a level comparable to those of MAO-activated metallocene catalysts. Base-free cationic metal alkyl complexes and catalytic studies on them had mainly been concerned with cationic methyl complexes, [Cp2M-Me] +. However, their thermal instability restricts the use of such systems at technically useful temperatures. The corresponding thermally more stable benzyl complexes,... [Pg.14]

The most famous mechanism, namely Cossets mechanism, in which the alkene inserts itself directly into the metal-carbon bond (Eq. 5), has been proposed, based on the kinetic study [134-136], This mechanism involves the intermediacy of ethylene coordinated to a metal-alkyl center and the following insertion of ethylene into the metal-carbon bond via a four-centered transition state. The olefin coordination to such a catalytically active metal center in this intermediate must be weak so that the olefin can readily insert itself into the M-C bond without forming any meta-stable intermediate. Similar alkyl-olefin complexes such as Cp2NbR( /2-ethylene) have been easily isolated and found not to be the active catalyst precursor of polymerization [31-33, 137]. In support of this, theoretical calculations recently showed the presence of a weakly ethylene-coordinated intermediate (vide infra) [12,13]. The stereochemistry of ethylene insertion was definitely shown to be cis by the evidence that the polymerization of cis- and trans-dideutero-ethylene afforded stereoselectively deuterated polyethylenes [138]. [Pg.19]

Bochmann M, Lancaster SJ (1995) Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complex. J Org Chem 494 55-59... [Pg.64]

However, the practical, direct synthesis of functionalized linear polyolefins via coordination copolymerization olefins with polar monomers (CH2 = CHX) remains a challenging and industrially important goal. In the mid-1990s Brookhart et al. [25, 27] reported that cationic (a-diimine)palladium complexes with weakly coordinating anions catalyze the copolymerization of ethylene with alkylacrylates to afford hyperbranched copolymers with the acrylate functions located almost exclusively at the chain ends, via a chain-walking mechanism that has been meticulously studied and elucidated by Brookhart and his collaborators at DuPont [25, 27], Indeed, this seminal work demonstrated for the first time that the insertion of acrylate monomers into certain late transition metal alkyl species is a surprisingly facile process. It spawned almost a decade of intense research by several groups to understand and advance this new science and to attempt to exploit it commercially [30-33, 61]. [Pg.163]

One of the most defining characteristics of the late metal a-diimine polymerization systems is the uniquely branched polyolefins that they afford. This arises from facile p-hydride elimination that late transition metal alkyl complexes undergo. The characteristics of the isomerization process have been the subject of much investigation, particularly with the more easily studied Pd(II) a-diimine system. The process is initiated by P-hydride elimination from the unsaturated alkyl agostic complex 1.17, followed by hydride reinsertion into olefin hydride intermediate 1.18 in a non-regioselective manner (Scheme 5). In doing so, the metal center may migrate... [Pg.190]

The initially expected (75) cis-hydrometallation or olefin-insertion step with fumarate (R = C02Me) yields the threo isomer 8, which then undergoes the k2 step with retention to give racemic 1,2-dideuterosuccinate. Such retention is necessary to give the usually observed (7, p. 407) overall cis addition of H2 to olefinic bonds, but this study provided the first direct experimental proof, the difficulty being the scarcity of stable metal alkyl-hydride intermediates. The Cp2MoH2 complex also catalyzes hydrogenation of 1,3- or 1,4-dienes to monoenes (197). [Pg.336]

Tandem procedures under hydroformylation conditions cannot only make use of the intrinsic reactivity of the aldehyde carbonyl group and its acidic a-position but they also include conversions of the metal alkyl and metal acyl systems which are intermediates in the catalytic cycle of hydroformylation. Metal alkyls can undergo -elimination leading to olefin isomerization, or couplings, respectively, insertion of unsaturated units enlarging the carbon skeleton. Similarly, metal acyls can be trapped by addition of nucleophiles or undergo insertion of unsaturated units to form synthetically useful ketones (Scheme 1). [Pg.75]

For a decade or so [CoH(CN)5] was another acclaimed catalyst for the selective hydrogenation of dienes to monoenes [2] and due to the exclusive solubility of this cobalt complex in water the studies were made either in biphasic systems or in homogeneous aqueous solutions using water soluble substrates, such as salts of sorbic add (2,4-hexadienoic acid). In the late nineteen-sixties olefin-metal and alkyl-metal complexes were observed in hydrogenation and hydration reactions of olefins and acetylenes with simple Rii(III)- and Ru(II)-chloride salts in aqueous hydrochloric acid [3,4]. No significance, however, was attributed to the water-solubility of these catalysts, and a new impetus had to come to trigger research specifically into water soluble organometallic catalysts. [Pg.10]

Some of these intermediates are analogous to those proposed by Chauvin in olefin metathesis ( Chauvin s mechanism ) [36]. They can be transformed into new olefins and new carbene-hydrides. The subsequent step of the catalytic cycle is then hydride reinsertion into the carbene as well as olefin hydrogenation. The final alkane liberation proceeds via a cleavage of the Ta-alkyl compounds by hydrogen, a process already observed in the hydrogenolysis [10] or possibly via a displacement by the entering alkane by o-bond metathesis [11]. Notably, the catalyst has a triple functionality (i) C-H bond activation to produce a metallo-carbene and an olefin, (ii) olefin metathesis and (iii) hydrogenolysis of the metal-alkyl. [Pg.89]

The most important difference between Chauvin s mechanism for olefin metathesis and the mechanism for alkane metathesis is that the latter applies itself to the reverse reaction of cleavage of alkanes by methane (which has no single C-C bond, see below) and, especially, it is based on a metal hydrido-carbene in equi-Ubrium with a metal-alkyl. [Pg.91]

Since group 4 derived species are of particular interest as catalysts for olefin polymerization and epoxidation reactions, the thermal stability of surface metal-alkyl species, as weU as their reactivity towards water, alcohols and water, deserve some attention. On the other hand, mono(siloxy) metaUiydrocarbyl species can be converted into bis- or tris(siloxy)metal hydrides by reaction with hydrogen [16, 41, 46-48]. Such species are less susceptible to leaching and can be used as pre-catalysts for the hydrogenolysis of C-C bonds, alkane metathesis and, eventually, for epoxidation and other reactions. [Pg.422]

The first step in the peroxide-induced reaction is the decomposition of the peroxide to form a free radical. The oxygen-induced reaction may involve the intermediate formation of a peroxide or a free radical olefin-oxygen addition product. (In the case of thermal and photochemical reactions, the free radical may be formed by the opening up of the double bond or, more probably, by dissociation of a carbon-hydrogen bond in metal alkyl-induced reactions, decomposition of the metal alkyl yields alkyl radicals.)... [Pg.25]

The transition group compound (catalyst) and the metal alkyl compound (activator) form an organometallic complex through alkylation of the transition metal by the activator which is the active center of polymerization (Cat). With these catalysts not only can ethylene be polymerized but also a-olefins (propylene, 1-butylene, styrene) and dienes. In these cases the polymerization can be regio- and stereoselective so that tactic polymers are obtained. The possibilities of combination between catalyst and activator are limited because the catalytic systems are specific to a certain substrate. This means that a given combination is mostly useful only for a certain monomer. Thus conjugated dienes can be polymerized by catalyst systems containing cobalt or nickel, whereas those systems... [Pg.216]

Substitution, both at the alkyl and the olefin, has clear and easily explainable effects on both insertion and chain transfer reactions. These effects are best understood in terms of the (de)stabilization of olefin and metal alkyl by substitution. [Pg.147]

Metal-Carbon Compounds. Clear examples of olefin insertions into transition metal-carbon groups are rare. The obvious reaction of olefins with alkyl- or acyl-cobalt tetracarbonyls are slow, complicated, and incomplete under the usual laboratory conditions. Under high pressure at elevated temperatures, in the... [Pg.185]

In the process of olefin insertion, also known as carbometalation, the 1,2 migratory insertion of the coordinated carbon-carbon multiple bond into the metal-carbon bond results in the formation of a metal-alkyl or metal-alkenyl complex. The reaction, in which the bond order of the inserted C-C bond is decreased by one unit, proceeds stereoselectively ( -addition) and usually also regioselectively (the more bulky metal is preferentially attached to the less substituted carbon atom. The willingness of alkenes and alkynes to undergo carbometalation is usually in correlation with the ease of their coordination to the metal centre. In the process of insertion a vacant coordination site is also produced on the metal, where further reagents might be attached. Of the metals covered in this book palladium is by far the most frequently utilized in such transformations. [Pg.11]


See other pages where Olefins metal alkyls is mentioned: [Pg.155]    [Pg.155]    [Pg.438]    [Pg.439]    [Pg.425]    [Pg.428]    [Pg.264]    [Pg.300]    [Pg.3]    [Pg.360]    [Pg.81]    [Pg.132]    [Pg.189]    [Pg.195]    [Pg.324]    [Pg.500]    [Pg.435]    [Pg.58]    [Pg.993]    [Pg.17]    [Pg.75]    [Pg.432]    [Pg.134]    [Pg.699]    [Pg.726]    [Pg.204]    [Pg.799]    [Pg.10]    [Pg.33]    [Pg.91]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Alkylated metals

Alkylation olefins

Olefins elimination from transition metal alkyls

© 2024 chempedia.info