Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oil bonds

Saponification is used to make soaps, which usually are the sodium salts of fatty acids. A soap has both a polar end and a nonpolar end. Soaps can be used to clean nonpolar dirt and oil with water because the nonpolar dirt and oil bond to the nonpolar end of the soap molecules, and the polar end of the soap molecules is soluble in water. Thus, the dirt-laden soap molecules can be rinsed away with the water. You can make soap by doing the miniLAB on this page. [Pg.786]

Different radical initiator systems (r.i.s.) and different VAc/r.i.s. ratios were tested. In the presence of K2S2O8 used in the same molecular ratio as reported for the organic solvent synthesis (0.15 mmol r.i.s./10.8 mmol VAc), a yellow copolymer was obtained. The solid, recovered after solvent distillation and washed with -pentane, contained 60% of the initial linseed oil bonded to polymer chains. [Pg.344]

C22H34O2. A straight-chain fatty acid with 5 double bonds. A major component of fish oils and the oils of marine animals, clupeine Protamine class protein found in the sperm and testicles of the herring. On hydrolysis it gives about 90% of argenine. [Pg.102]

Alkanes from CH to C4gFlg2 typically appear in crude oil, and represent up to 20% of the oil by volume. The alkanes are largely chemically inert (hence the name paraffins, meaning little affinity), owing to the fact that the carbon bonds are fully saturated and therefore cannot be broken to form new bonds with other atoms. This probably explains why they remain unchanged over long periods of geological time, despite their exposure to elevated temperatures and pressures. [Pg.91]

A fiirther step in coarse graining is accomplished by representing the amphiphiles not as chain molecules but as single site/bond entities on a lattice. The characteristic architecture of the amphiphile—the hydrophilic head and hydrophobic tail—is lost in this representation. Instead, the interaction between the different lattice sites, which represent the oil, the water and the amphiphile, have to be carefiilly constmcted in order to bring about the amphiphilic behaviour. [Pg.2379]

As early as 1969, Wlieeler and Widom [73] fomuilated a simple lattice model to describe ternary mixtures. The bonds between lattice sites are conceived as particles. A bond between two positive spins corresponds to water, a bond between two negative spins corresponds to oil and a bond coimecting opposite spins is identified with an amphiphile. The contact between hydrophilic and hydrophobic units is made infinitely repulsive hence each lattice site is occupied by eitlier hydrophilic or hydrophobic units. These two states of a site are described by a spin variable s., which can take the values +1 and -1. Obviously, oil/water interfaces are always completely covered by amphiphilic molecules. The Hamiltonian of this Widom model takes the form... [Pg.2379]

If one is absolutely serious about ultra pure safrole then it can be separated from the eugenol-free sassafras oil by treatment with mercuric acetate [1,2,3,4] which likes that terminal double bond that only safrole has. The Hg(AcO)2 latches on to safrole at that double bond bringing it into solution as a solid sort of like the way that eugenol was. The safrole can then be separated from its still oily buddies by vacuum filtration. Safrole is then regenerated to its normal oily form by treatment with hydrochloric acid (HCI) which flicks the Hg(AcO)2 off the safrole and the safrole double bond reforms. As it so happens, the mercuric acetate also reforms intact so that it can be reused again such as in one of those... [Pg.34]

Solubility in Water A familiar physical property of alkanes is contained m the adage oil and water don t mix Alkanes—indeed all hydrocarbons—are virtually insoluble m water In order for a hydrocarbon to dissolve m water the framework of hydrogen bonds between water molecules would become more ordered m the region around each mole cule of the dissolved hydrocarbon This increase m order which corresponds to a decrease m entropy signals a process that can be favorable only if it is reasonably... [Pg.82]

When the groups on either end of a double bond are the same or aie shuctuially sum lar to each other it is a simple matter to describe the configuration of the double bond as CIS or trans Oleic acid for example a compound that can be obtained from olive oil has a CIS double bond Cmnamaldehyde responsible for the characteristic odor of cm namon has a trans double bond... [Pg.193]

Double bonds are accommodated by rings of all sizes The smallest cycloalkene cyclo propene was first synthesized m 1922 A cyclopropene nng is present m sterculic acid a substance derived from one of the components of the oil present m the seeds of a tree (Sterculia foelida) that grows m the Philippines and Indonesia... [Pg.200]

Cineole is the chief component of eucalyptus oil it has the molecular formula CjoHigO and contains no double or triple bonds It reacts with hydrochlonc acid to give the dichlonde shown... [Pg.699]

Esters can participate m hydrogen bonds with substances that contain hydroxyl groups (water alcohols carboxylic acids) This confers some measure of water solubil ity on low molecular weight esters methyl acetate for example dissolves m water to the extent of 33 g/100 mL Water solubility decreases as the carbon content of the ester increases Fats and oils the glycerol esters of long chain carboxylic acids are practically insoluble m water... [Pg.846]

A few fatty acids with trans double bonds (trans fatty acids) occur naturally but the major source of trans fats comes from partial hydrogenation of vegetable oils m for example the preparation of margarine However the same catalysts that catalyze the... [Pg.1072]

The intermediate m hydrogenation formed by reaction of the unsaturated ester with the hydrogenated surface of the metal catalyst not only can proceed to the saturated fatty acid ester but also can dissociate to the original ester having a cis double bond or to its trans stereoisomer Unlike polyunsaturated vegetable oils which tend to reduce serum cholesterol levels the trans fats produced by partial hydrogenation have cholesterol raising effects similar to those of saturated fats... [Pg.1074]

Prostaglandins arise from unsaturated C20 carboxylic acids such as arachidonic acid (see Table 26 1) Mammals cannot biosynthesize arachidonic acid directly They obtain Imoleic acid (Table 26 1) from vegetable oils m their diet and extend the car bon chain of Imoleic acid from 18 to 20 carbons while introducing two more double bonds Lmoleic acid is said to be an essential fatty acid, forming part of the dietary requirement of mammals Animals fed on diets that are deficient m Imoleic acid grow poorly and suffer a number of other disorders some of which are reversed on feed mg them vegetable oils rich m Imoleic acid and other polyunsaturated fatty acids One function of these substances is to provide the raw materials for prostaglandin biosynthesis... [Pg.1080]

Fats and oils (Section 26 2) Tnesters of glycerol Fats are solids at room temperature oils are liquids Fatty acid (Section 26 2) Carboxylic acids obtained by hydro lysis of fats and oils Fatty acids typically have unbranched chains and contain an even number of carbon atoms in the range of 12-20 carbons They may include one or more double bonds... [Pg.1283]

The iodine number of fats and oils provides a quantitative measurement of the degree of unsaturation. A solution containing a 100% excess of IGl is added to the sample, reacting across the double-bonded sites of unsaturation. The excess IGl is converted to I2 by adding KI. The resulting I2 is reacted with a known excess of Na2S203. To complete the analysis the excess 8203 is back titrated with coulometrically generated I2. [Pg.534]

Tocotrienols differ from tocopherols by the presence of three isolated double bonds in the branched alkyl side chain. Oxidation of tocopherol leads to ring opening and the formation of tocoquinones that show an intense red color. This species is a significant contributor to color quaUty problems in oils that have been abused. Tocopherols function as natural antioxidants (qv). An important factor in their activity is their slow reaction rate with oxygen relative to combination with other free radicals (11). [Pg.124]


See other pages where Oil bonds is mentioned: [Pg.28]    [Pg.170]    [Pg.222]    [Pg.1041]    [Pg.837]    [Pg.217]    [Pg.848]    [Pg.345]    [Pg.374]    [Pg.10]    [Pg.28]    [Pg.170]    [Pg.222]    [Pg.1041]    [Pg.837]    [Pg.217]    [Pg.848]    [Pg.345]    [Pg.374]    [Pg.10]    [Pg.127]    [Pg.294]    [Pg.5]    [Pg.11]    [Pg.2591]    [Pg.2777]    [Pg.46]    [Pg.207]    [Pg.89]    [Pg.239]    [Pg.130]    [Pg.1072]    [Pg.385]    [Pg.389]    [Pg.139]    [Pg.231]    [Pg.448]    [Pg.117]    [Pg.122]    [Pg.124]    [Pg.125]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Synthesis of Vegetable Oil Polyols by using Reactions Involving the Double Bonds

© 2024 chempedia.info