Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid electromagnets

The concept of potential energy in mechanics is one example of a scalar field, defined by a simple number that represents a single function of space and time. Other examples include the displacement of a string or a membrane from equilibrium the density, pressure and temperature of a fluid electromagnetic, electrochemical, gravitational and chemical potentials. All of these fields have the property of invariance under a transformation of space coordinates. The numerical value of the field at a point is the same, no matter how or in what form the coordinates of the point are expressed. [Pg.107]

Fig. 3 Optofluidic architecture for waveguide-based transport (a) diagram of fluid/electromagnetic coupling at waveguide interface, (b) Cross section of guided mode... Fig. 3 Optofluidic architecture for waveguide-based transport (a) diagram of fluid/electromagnetic coupling at waveguide interface, (b) Cross section of guided mode...
Electromagnetic flow meters ate avadable with various liner and electrode materials. Liner and electrode selection is governed by the corrosion characteristics of the Hquid. Eor corrosive chemicals, fluoropolymer or ceramic liners and noble metal electrodes are commonly used polyurethane or mbber and stainless steel electrodes are often used for abrasive slurries. Some fluids tend to form an insulating coating on the electrodes introducing errors or loss of signal. To overcome this problem, specially shaped electrodes are avadable that extend into the flow stream and tend to self-clean. In another approach, the electrodes are periodically vibrated at ultrasonic frequencies. [Pg.65]

There are do2ens of flow meters available for the measurement of fluid flow (30). The primary measurements used to determine flow include differential pressure, variable area, Hquid level, electromagnetic effects, thermal effects, and light scattering. Most of the devices discussed herein are those used commonly in the process industries a few for the measurement of turbulence are also described. [Pg.109]

Measurement by Electromagnetic Effects. The magnetic flow meter is a device that measures the potential developed when an electrically conductive flow moves through an imposed magnetic field. The voltage developed is proportional to the volumetric flow rate of the fluid and the magnetic field strength. The process fluid sees only an empty pipe so that the device has a very low pressure drop. The device is useful for the measurement of slurries and other fluid systems where an accumulation of another phase could interfere with flow measurement by other devices. The meter must be installed in a section of pipe that is much less conductive than the fluid. This limits its appHcabiHty in many industrial situations. [Pg.110]

Electromagnetic Force When the fluid is an electrical conductor, as is the case with molten metals, it is possible to impress an electromagnetic field around the fluid conduit in such a way that a driving force that will cause flow is created. Such pumps have been developed for the handling of heat-transfer hquids, especially for nuclear reactors. [Pg.900]

This chapter is a brief diseussion of large deformation wave codes for multiple material problems and their applications. There are numerous other reviews that should be studied [7], [8]. There are reviews on transient dynamics codes for modeling gas flow over an airfoil, incompressible flow, electromagnetism, shock modeling in a single fluid, and other types of transient problems not addressed in this chapter. [Pg.325]

Even if the receptor by itself has high accuracy, the sensor may be unable to execute the measurement in a defined place. Quality and total accuracy depend on the combination of receptor, the converter for measured values, and mechanical protection. Mechanical protection can take the form of pockets in water and fluid and also assembly boxes which protect against pollution, humidity, and temperature in the surroundings or against electromagnetic transmissions and noise from power-supplied pipes and cables. [Pg.778]

The noncontact measurement principle, usually called optical or radiation temperature measurement, is based on detecting electromagnetic radiation emitted from an object. In ventilation applications this method of measurement is used to determine surface temperatures in the infrared region. The advantage is that the measurement can be carried out from a distance, without contact with the surface, which possibly influences the heat balance and the temperatures. The disadvantages are that neither air (or other fluid) temperature nor internal temperature of a material can be measured. Also the temper-... [Pg.1136]

The Coriolis meter (Figure 6.28) contains a sensor consisting of one or more tubes which are vibrated at their resonant frequency by electromagnetic drivers, and their harmonic vibrations impart an angular motion to the fluid as it passes through the tubes which,... [Pg.267]

These usually consist of a non-magnetic casing, a rotor, and an electromagnetic pickup. The rotor is either a propeller or turbine freely suspended on ball bearings in the path of the flowing fluid with the axis of rotation in line with the flow. The rotor turns in the fluid flow stream at a rate proportional to the flow rate. As the rotor turns it cuts through the lines of force of an electric field produced by an adjacent induction coil. The electrical pulse output from the induction coil pickup is amplified and fed to readout instruments or recorders to give either total flow or flow rate [Holland and Chapman (1966)]. [Pg.283]

Although electromagnetic flowmeters are expensive they are especially suitable for metering liquids containing suspended solids. Furthermore, unlike head flowmeters, they are unaffected by variations in fluid viscosity, density or temperature. Since they are also unaffected by turbulence or variations in velocity profile, they can be installed close to valves, bends, fittings, etc. [Pg.284]

Numerous atomization techniques have evolved for the production of metal/alloy powders or as a step in spray forming processes. Atomization of melts may be achieved by a variety of means such as aerodynamic, hydrodynamic, mechanical, ultrasonic, electrostatic, electromagnetic, or pressure effect, or a combination of some of these effects. Some of the atomization techniques have been extensively developed and applied to commercial productions, including (a) two-fluid atomization using gas, water, or oil (i.e., gas atomization, water atomization, oil atomization), (b) vacuum atomization, and (c) rotating electrode atomization. Two-fluid atomization... [Pg.66]

The effect of turbulence in the fluid stream has been studied by Richardson and Meikle(25) who suspended a particle on a thread at the centre of a vertical pipe up which water was passed under conditions of turbulent flow. The upper end of the thread was attached to a lever fixed on a coil free to rotate in the field of an electromagnet. By passing a current through the coil it was possible to bring the level back to a null position. After calibration, the current required could be related to the force acting on the sphere. [Pg.164]


See other pages where Fluid electromagnets is mentioned: [Pg.717]    [Pg.373]    [Pg.717]    [Pg.373]    [Pg.337]    [Pg.65]    [Pg.151]    [Pg.331]    [Pg.124]    [Pg.763]    [Pg.898]    [Pg.913]    [Pg.75]    [Pg.123]    [Pg.125]    [Pg.70]    [Pg.529]    [Pg.339]    [Pg.266]    [Pg.970]    [Pg.312]    [Pg.551]    [Pg.590]    [Pg.163]    [Pg.108]    [Pg.390]    [Pg.235]    [Pg.242]    [Pg.158]    [Pg.367]    [Pg.283]    [Pg.284]    [Pg.387]    [Pg.388]    [Pg.20]    [Pg.6]    [Pg.249]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



© 2024 chempedia.info