Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent, effects nucleophilicity

There have been a large number of detailed studies, especially involving kinetic measurements, that have helped to determine the reactivity of various nucleophiles, solvent effects, and the finer details of aromatic nucleophilic substitutions proceeding via the addition-elimination mechanism. We will not attempt to summarize these results here, since reviews are available. Carbanions, alkoxides, and amines are all reactive in nucleophflic aromatic substitution and provide most of the cases in which this reaction has been used preparatively. Some examples are given in Scheme 7.7. [Pg.282]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

In fee absence of fee solvation typical of protic solvents, fee relative nucleophilicity of anions changes. Hard nucleophiles increase in reactivity more than do soft nucleophiles. As a result, fee relative reactivity order changes. In methanol, for example, fee relative reactivity order is N3 > 1 > CN > Br > CP, whereas in DMSO fee order becomes CN > N3 > CP > Br > P. In mefeanol, fee reactivity order is dominated by solvent effects, and fee more weakly solvated N3 and P ions are fee most reactive nucleophiles. The iodide ion is large and very polarizable. The anionic charge on fee azide ion is dispersed by delocalization. When fee effect of solvation is diminished in DMSO, other factors become more important. These include fee strength of fee bond being formed, which would account for fee reversed order of fee halides in fee two series. There is also evidence fiiat S( 2 transition states are better solvated in protic dipolar solvents than in protic solvents. [Pg.294]

The range of nueleophiles whieh have been observed to partieipate in nueleophilie aromatie substitution is similar to that for S[, 2 reactions and includes alkoxides, phenoxides, sulftdes, fluoride ion, and amines. Substitutions by earbanions are somewhat less common. This may be because there are frequently complications resulting from eleetron-transfer proeesses with nitroaromatics. Solvent effects on nucleophilic aromatic substitutions are similar to those discussed for S 2 reactions. Dipolar... [Pg.591]

These reactions do not appear to involve free carbocations, because they proceed effectively in nucleophilic solvents that would successfully compete with halide or similar anions for free carbocations. Also, rearrangements are unusual under these conditions, although they have been observed in special cases. [Pg.725]

Mercury(II) trifluoroacetate is a good electrophile that is highly reactive toward carbon-carbon double bonds [52, 53, 54] When reacting with olefins in nucleophilic solvents, it usually gives exclusively mercurated solvoadducts, but never products of skeletal rearrangement Solvomercuration-demercuratton of alkenes with mercury(II) trifluoroacetate is a remarkably effective procedure for the preparation of esters and alcohols with Markovnikov s regiochemistry [52, 5J] (equation 24)... [Pg.951]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

Most of the kinetic measures of solvent effects have been developed for the study of nucleophilic substitution (Sn) at saturated carbon, solvolytic reactions in particular. It may, therefore, be helpful to give a brief review of aliphatic nucleophilic substitution. Two mechanistic routes have been clearly identified. One of these is shown by... [Pg.427]

Figure 11.7 Energy diagrams showing the effects of (a) substrate, (b) nucleophile, (c) leaving group, and (d) solvent on Sn2 reaction rates. Substrate and leaving group effects are felt primarily in the transition state. Nucleophile and solvent effects are felt primarily in the reactant ground state. Figure 11.7 Energy diagrams showing the effects of (a) substrate, (b) nucleophile, (c) leaving group, and (d) solvent on Sn2 reaction rates. Substrate and leaving group effects are felt primarily in the transition state. Nucleophile and solvent effects are felt primarily in the reactant ground state.
What about solvent Do solvents have the same effect in S>g 1 reactions that they have in S j2 reactions The answer is both yes and no. Yes, solvents have a large effect on S l reactions, but no, the reasons for the effects on S jl and SN2 reactions are not the same. Solvent effects in the SN2 reaction are due largely to stabilization or destabilization of the nucleophile reactant. Solvent effects in the Sjsjl reaction, however, are due largely to stabilization or destabilization of the transition state. [Pg.379]

It should be emphasized again that both the SN1 and the 5 2 reaction show solvent effects but that they do so for different reasons. SN2 reactions are disfavored in protic solvents because the ground-state energy oi the nucleophile is lowered by solvation. S l reactions are favored in protic solvents because the transition-state energy leading to carbocation intermediate is lowered by solvation. [Pg.380]

Esters can also be synthesized by an acid-catalyzed nucleophilic acyl substitution reaction of a carboxylic acid with an alcohol, a process called the Fischer esterification reaction. Unfortunately, the need to use an excess of a liquid alcohol as solvent effectively limits the method to the synthesis of methyl, ethyl, propyl, and butyl esters. [Pg.795]

The conductometric results of Meerwein et al. (1957 b) mentioned above demonstrate that, in contrast to other products of the coupling of nucleophiles to arenediazonium ions, the diazosulfones are characterized by a relatively weak and polarized covalent bond between the p-nitrogen and the nucleophilic atom of the nucleophile. This also becomes evident in the ambidentate solvent effects found in the thermal decomposition of methyl benzenediazosulfone by Kice and Gabrielson (1970). In apolar solvents such as benzene or diphenylmethane, they were able to isolate decomposition products arising via a mechanism involving homolytic dissociation of the N — S bond. In a polar, aprotic solvent (acetonitrile), however, the primary product was acetanilide. The latter is thought to arise via an initial hetero-lytic dissociation and reaction of the diazonium ion with the solvent (Scheme 6-11). [Pg.118]

Most of these results have been obtained in methanol but some of them can be extrapolated to other solvents, if the following solvent effects are considered. Bromine bridging has been shown to be hardly solvent-dependent.2 Therefore, the selectivities related to this feature of bromination intermediates do not significantly depend on the solvent. When the intermediates are carbocations, the stereoselectivity can vary (ref. 23) widely with the solvent (ref. 24), insofar as the conformational equilibrium of these cations is solvent-dependent. Nevertheless, this equilibration can be locked in a nucleophilic solvent when it nucleophilically assists the formation of the intermediate. Therefore, as exemplified in methylstyrene bromination, a carbocation can react 100 % stereoselectivity. [Pg.111]

In these solvents at sufficiently low Br2 concentration (< 10-3 m) the kinetics are first order both in the olefin and in Br2 and the main solvent effect consists of an electrophilic solvation of the departing Br ion. A nucleophilic assistance by hydroxylic solvents has also been recognized recently (ref. 26) (Scheme 10). So far, return during the olefin bromination in methanol had been admitted only for alkylideneadamantanes, and was ascribed to steric inhibition to nucleophilic attack at carbons of the bromonium ion (ref. 26). [Pg.148]

Ejfect ofSolvent. In addition to the solvent effects on certain SeI reactions, mentioned earlier (p. 764), solvents can influence the mechanism that is preferred. As with nucleophilic substitution (p. 448), an increase in solvent polarity increases the possibility of an ionizing mechanism, in this case SeI, in comparison with the second-order mechanisms, which do not involve ions. As previously mentioned (p. 763), the solvent can also exert an influence between the Se2 (front or back) and SeI mechanisms in that the rates of Se2 mechanisms should be increased by an increase in solvent polarity, while Sni mechanisms are much less affected. [Pg.769]


See other pages where Solvent, effects nucleophilicity is mentioned: [Pg.134]    [Pg.134]    [Pg.2593]    [Pg.628]    [Pg.635]    [Pg.766]    [Pg.240]    [Pg.290]    [Pg.293]    [Pg.362]    [Pg.900]    [Pg.363]    [Pg.375]    [Pg.387]    [Pg.307]    [Pg.292]    [Pg.41]    [Pg.1315]    [Pg.1315]    [Pg.41]    [Pg.109]    [Pg.421]    [Pg.10]   
See also in sourсe #XX -- [ Pg.113 , Pg.411 ]

See also in sourсe #XX -- [ Pg.233 ]

See also in sourсe #XX -- [ Pg.288 ]

See also in sourсe #XX -- [ Pg.517 ]

See also in sourсe #XX -- [ Pg.240 , Pg.241 ]

See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Nucleophile effects

Nucleophiles effectiveness

Nucleophiles solvent

Nucleophilic solvent

Nucleophilicity effects

Nucleophilicity solvent

© 2024 chempedia.info