Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution reactions examples

Because the.se substitution reactions involve electron-rich nucleophiles, they are called nucleophilic substitution reactions. Examples are shown in Equations [l]-[3]. Nucleophilic substitutions are Lewis acid—base reactions. The nucleophile donates its electron pair, the alkyl halide (Lewis acid) accepts it, and the C-X bond is heterolytically cleaved. Curved arrow notation can be used to show the movement of electron pairs, as shown in Equation [3]. [Pg.237]

Noticeably absent from Table 23 3 are nucleophilic substitutions We have so far seen no nucleophilic substitution reactions of aryl halides m this text Chlorobenzene for example is essentially inert to aqueous sodium hydroxide at room temperature Reac tion temperatures over 300°C are required for nucleophilic substitution to proceed at a reasonable rate... [Pg.973]

Halogen atoms in the 2-position of imidazoles, thiazoles and oxazoles (542) undergo nucleophilic substitution reactions. The conditions required are more vigorous than those used, for example, for a- and y-halogenopyridines, but much less severe than those required for chlorobenzene. Thus in compounds of type (542 X = Cl, Br) the halogen atom can be replaced by the groups NHR, OR, SH and OH (in the last two instances, the products tautomerize see Sections 4.02.3.7 and 4.02.3.8.1). [Pg.104]

Trifluoromethanesulfonate (triflate) ion is an exceptionally good leaving grov. It can be used for nucleophilic substitution reactions on unreactive substrates. Acetolysis of cyclopropyl triflate, for example, occurs 10 times faster than acetolysis of cyclopropyl tosylate. Table 5.11 gives a conqiarison of the triftate group with some other common leaving groups. [Pg.296]

Examples of effects of reactant stmcture on the rate of nucleophilic substitution reactions have appeared in the preceding sections of this chapter. The general trends of reactivity of primaiy, secondary, and tertiaiy systems and the special reactivity of allylic and benzylic systems have been discussed in other contexts. This section will emphasize the role that steric effects can pl in nucleophilic substitution reactions. [Pg.298]

The strength of their- car bon-halogen bonds causes aryl halides to react very slowly in reactions in which carbon-halogen bond cleavage is rate-detenrrining, as in nucleophilic substitution, for example. Later in this chapter we will see exanples of such reactions that do take place at reasonable rates but proceed by mechanisms distinctly different from the classical SnI and Sn2 pathways. [Pg.972]

Monomeric thiazyl halides can be stabilized by coordination to transition metals and a large number of such complexes are known (Section 7.5). In addition, NSX monomers undergo several types of reactions that can be classified as follows (a) reactions involving the n-system of the N=S bond (b) reactions at the nitrogen centre (c) nucleophilic substitution reactions (d) halide abstraction, and (e) halide addition. Examples of each type of behaviour are illustrated below. [Pg.141]

Arynes are intermediates in certain reactions of aromatic compounds, especially in some nucleophilic substitution reactions. They are generated by abstraction of atoms or atomic groups from adjacent positions in the nucleus and react as strong electrophiles and as dienophiles in fast addition reactions. An example of a reaction occurring via an aryne is the amination of o-chlorotoluene (1) with potassium amide in liquid ammonia. According to the mechanism given, the intermediate 3-methylbenzyne (2) is first formed and subsequent addition of ammonia to the triple bond yields o-amino-toluene (3) and m-aminotoluene (4). It was found that partial rearrangement of the ortho to the meta isomer actually occurs. [Pg.121]

Even polyalkoxy-s-triazines are quite prone to nucleophilic substitution. For example, 2,4,6-trimethoxy-s-triazine (320) is rapidly hydrolyzed (20°, dilute aqueous alkali) to the anion of 4,6-dimethoxy-s-triazin-2(l )-one (331). This reaction is undoubtedly an /S jvr-4r2 reaction and not an aliphatic dealkylation. The latter type occurs with anilines at much higher temperatures (150-200°) and with chloride ion in the reaction of non-basified alcohols with cyanuric chloride at reflux temperatures. The reported dealkylation with methoxide has been shown to be hydrolysis by traces of water present. Several analogous dealkylations by alkoxide ion, reported without evidence for the formation of the dialkyl ether, are all associated with the high reactivity of the alkoxy compounds which ai e, in fact, hydrolyzed by usually tolerable traces of water. Brown ... [Pg.304]

When we proposed the possibility of nucleophilic substitution reactions on indole nitrogen in our hypothesis, we were taken to be eccentric. Fortunately, we have been able to demonstrate examples that seem to accord with the prediction. [Pg.124]

These types of compounds are expected to be produced by utilizing nucleophile substitution reaction at the 2 position of l-methoxyindole-3-carbaldehyde (115a) and 3-acetyl-1-methoxyindole (107). In practice, after conversion of 115a to 195a (53%) as described in Section IV.J, 195a is allowed to react with various amines. Consequently, many derivatives of 271 are obtained. Typical examples (271a-c) are shown in the scheme (99H1157). [Pg.142]

A wide array of substances can be prepared using nucleophilic substitution reactions. In fact, we ve already seen examples in previous chapters. The reaction of an acetylide anion with an alkyl halide (Section 8.8), for instance, is an Sn2 reaction in which the acetylide nucleophile replaces halide. [Pg.367]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]

Certain nucleophilic substitution reactions that normally involve carbocations can take place at norbomyl bridgeheads (though it is not certain that carbocations are actually involved in all cases) if the leaving group used is of the type that cannot function as a nucleophile (and thus come back) once it has gone, for example. [Pg.397]

In Section 8.2.3.2, we discussed arylation of enolates and enolate equivalents using palladium catalysts. Related palladium-phosphine combinations are very effective catalysts for aromatic nucleophilic substitution reactions. For example, conversion of aryl iodides to nitriles can be done under mild conditions with Pd(PPh3)4 as a catalyst. [Pg.1045]

Organic halides play a fundamental role in organic chemistry. These compounds are important precursors for carbocations, carbanions, radicals, and carbenes and thus serve as an important platform for organic functional group transformations. Many classical reactions involve the reactions of organic halides. Examples of these reactions include the nucleophilic substitution reactions, elimination reactions, Grignard-type reactions, various transition-metal catalyzed coupling reactions, carbene-related cyclopropanations reactions, and radical cyclization reactions. All these reactions can be carried out in aqueous media. [Pg.170]

Nucleophilic substitution reactions, to which the aromatic rings are activated by the presence of the carbonyl groups, are commonly used in the elaboration of the anthraquinone nucleus, particularly for the introduction of hydroxy and amino groups. Commonly these substitution reactions are catalysed by either boric acid or by transition metal ions. As an example, amino and hydroxy groups may be introduced into the anthraquinone system by nucleophilic displacement of sulfonic acid groups. Another example of an industrially useful nucleophilic substitution is the reaction of l-amino-4-bromoanthraquinone-2-sulfonic acid (bromamine acid) (76) with aromatic amines, as shown in Scheme 4.5, to give a series of useful water-soluble blue dyes. The displacement of bromine in these reactions is catalysed markedly by the presence of copper(n) ions. [Pg.87]

When reacting two phases that are not very soluble in each other, for example when carrying out nucleophilic substitution reactions, phase transfer catalysts should be considered when scaling down from equipment with poor mixing characteristic, rather than buying new equipment. [Pg.322]

Finally it should be mentioned that a number of nucleophilic substitution reactions of unactivated halides can be made to proceed in bipolar non-protic solvents such as dimethyl sulphoxide (DMSO), Me2S —Oe. No hydrogen-bonded solvent envelope, as in for example MeOH, then needs to be stripped from Ye before it can function as a nucleophile AG is thus much lower and the reaction correspondingly faster. Rate differences of as much as 109 have been observed on changing the solvent from MeOH to Me2SO. Chlorobenzene will thus react readily under these conditions with Me3COe ... [Pg.173]

Related work, e.g., on Fe(CO)3[Et2C2(BI)2S] (99) and CoCp[XB-(CHCH)2BX] (X = OMe, Cl) (75), shows that nucleophilic substitution reactions certainly have a much wider scope than is apparent from the few examples known in borabenzene chemistry. [Pg.230]

The enormous number of coordination compounds undergo many reactions, but a large number of reactions can be classified into a small number of reaction types. When one ligand replaces another, the reaction is called a substitution reaction. For example, when ammonia is added to an aqueous solution containing Cu2+, water molecules in the coordination sphere of the Cu2+ are replaced by molecules of NH3. Ligands are held to metal ions because they are electron pair donors (Lewis bases). Lewis bases are nucleophiles (see Chapter 9), so the substitution of one nucleophile for another is a nucleophilic substitution reaction. Such a reaction can be illustrated as... [Pg.701]

Nucleophilic substitution reactions have rates that vary enormously. For example, the reaction... [Pg.701]

The 5-position in 1,2,4-thiadiazoles is the most reactive in nucleophilic substitution reactions. For example, halogens may be displaced by a variety of nucleophiles <1984CHEC(6)463> however, halogens in the 3-position are inert toward most nucleophilic reagents. [Pg.492]

The interfacial mechanism provides an acceptable explanation for the effect of the more lipophilic quaternary ammonium salts, such as tetra-n-butylammonium salts, Aliquat 336 and Adogen 464, on the majority of base-initiated nucleophilic substitution reactions which require the initial deprotonation of the substrate. Subsequent to the interfacial deprotonation of the methylene system, for example the soft quaternary ammonium cation preferentially forms a stable ion-pair with the soft carbanion, rather than with the hard hydroxide anion (Scheme 1.8). Strong evidence for the competing interface mechanism comes from the observation that, even in the absence of a catalyst, phenylacetonitrile is alkylated under two-phase conditions using concentrated sodium hydroxide [51],... [Pg.12]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

The most frequently encountered reactions in organic sulfur chemistry are nucleophilic displacement reactions. The mechanism and steric course of reactions have been the main points of interest of research groups all over the world, in particular, Andersen, Cram, Johnson, and Mislow in the United States Kobayashi and Oae in Japan Kjaer in Denmark and Fava and Montanari in Italy. The results of these investigators have been discussed exhaustively in many reviews on sulfur stereochemistry. In a recent report on nucleophilic substitution at tricoordinate sulfur, the literature was covered by Tillett (10) to the end of 1975. Therefore only some representative examples of nucleophilic substitution reactions at chiral sulfur are discussed here. However, recent results obtained in the authors laboratory are included. [Pg.418]

As the last point in Sect. IV, we discuss briefly the reactions of chiral sulfur compounds with electrophilic reagents. In contrast to nucleophilic substitution reactions, the number of known electrophilic reactions at sulfur is very small and practically limited to chiral tricoordinate sulfur compounds that on reacting with electrophilic reagents produce more stable tetracoordinate derivatives. It is generally assumed that the electrophilic attack is directed on the lone electron pair on sulfur and that the reaction is accompanied by retention of configuration. As typical examples of electrophilic reactions at tricoordinate sulfur, we mention oxidation, imination, alkylation, and halogenation. All these reactions were touched on in the section dealing with the synthesis of chiral tetracoordinate sulfur compounds. [Pg.431]

Reaction mechanisms divide the transformations between organic molecules into classes that can be understood by well-defined concepts. Thus, for example, the SnI or Sn2 nucleophilic substitutions are examples of organic reaction mechanisms. Each mechanism is characterized by transition states and intermediates that are passed over while the reaction proceeds. It defines the kinetic, stereochemical, and product features of the reaction. Reaction mechanisms are thus extremely important to optimize the respective conversion for conditions, selectivity, or yields of desired products. [Pg.3]


See other pages where Nucleophilic substitution reactions examples is mentioned: [Pg.275]    [Pg.298]    [Pg.329]    [Pg.232]    [Pg.184]    [Pg.102]    [Pg.170]    [Pg.990]    [Pg.401]    [Pg.56]    [Pg.153]    [Pg.340]    [Pg.137]    [Pg.293]    [Pg.104]    [Pg.260]    [Pg.265]    [Pg.16]    [Pg.25]    [Pg.198]    [Pg.10]   
See also in sourсe #XX -- [ Pg.183 , Pg.184 , Pg.185 , Pg.186 ]




SEARCH



Examples reaction

Nucleophiles examples

Nucleophiles substitution reactions

Nucleophilic substitution reactions nucleophiles

Substitution reactions nucleophile

Substitution reactions nucleophilic

© 2024 chempedia.info