Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition Metal-Catalyzed Coupling Reactions

The methods for the preparation of enantioenriched axially chiral biaryl compounds include en miatic or chemical resolution of their racemic mixture, atroposelective coupling reactions, transition metal-catalyzed asymmetric... [Pg.92]

To unlock its full potential, C-H activation has to be coupled with a functionalization event (e.g., 3—>4). For instance, a hydride elimination occurring after the formation of metal complexes such as 3 furnishes olefins, versatile intermediates for further modification reactions. Transition metal-catalyzed atom- or atom group-transfer reactions that permit the introduction of oxygen-, carbon-, and boron-containing groups are also presented. [Pg.37]

Geissler, H. Transition metal-catalyzed cross coupling reactions. Transition Metals for Organic Synthesis 1998, 1, 158-183. [Pg.681]

Metal Enolates. In parallel with additives, transition metals may be added to enolates to give transmetallated species which can undergo cross-coupling chemistry. Perhaps the earliest example of metal-catalyzed enolate reactions is the Reformatsky reaction. Transition metal-catalyzed enolate chemistry has been recently revived in the literature, particularly in the field of asymmetric catalysis. The transition metal-catalyzed coupling reactions of aryl halides, allyl epoxides, and allylic esters with alkyl enolates have been recently investigated. Generally the choice of base employed depends on the substrate and on the reaction performed. For enolate arylation, KHMDS seems to be the most... [Pg.232]

The reaction uses only a single equivalent of TMS-Br and MeOH, which acts as a trap for the TMS group, to give MeOTMS as a by-product. The reaction is extremely regioselective with E/Z ratios from 11 1 to >33 1.The bromine(orpossiblyiodine)atom installed in the reaction is easily metaUated and reacted with electrophiles (chloroformates, TMS-Cl, etc.) or coupled, under transition metal-catalyzed conditions, with vinyls, CO, or Grignards. Additionally, TMS-Br may also be reacted with alkynyl ethers (eq 31) to produce a-bromo vinyl ethers. [Pg.95]

Transition-Metal Catalyzed Cyclizations. o-Halogenated anilines and anilides can serve as indole precursors in a group of reactions which are typically cataly2ed by transition metals. Several catalysts have been developed which convert o-haloanilines or anilides to indoles by reaction with acetylenes. An early procedure involved coupling to a copper acetyUde with o-iodoaniline. A more versatile procedure involves palladium catalysis of the reaction of an o-bromo- or o-trifluoromethylsulfonyloxyanihde with a triaLkylstaimylalkyne. The reaction is conducted in two stages, first with a Pd(0) and then a Pd(II) catalyst (29). [Pg.87]

Metallocycles as intermediates in synthesis of heterocycles by transition metal-catalyzed coupling reactions under C—H bond activation 99AG(E)1698. [Pg.214]

In addition to the applications reported in detail above, a number of other transition metal-catalyzed reactions in ionic liquids have been carried out with some success in recent years, illustrating the broad versatility of the methodology. Butadiene telomerization [34], olefin metathesis [110], carbonylation [111], allylic alkylation [112] and substitution [113], and Trost-Tsuji-coupling [114] are other examples of high value for synthetic chemists. [Pg.252]

Because of the unambiguous reactive sites of monomers and the high chemo-and stereoselectivity of transition-metal-catalyzed coupling reactions, polymers prepared by transition metal coupling have predictable chemical structures. Functional groups can be easily and selectively introduced at the desired position within die polymer chains. Therefore, polymers widi specific properties can be rationally designed and synthesized. [Pg.477]

The transition metal catalyzed cross coupling of an organohalide with a boronic acid derivative, the Suzuki-Miyaura coupling, has become one of the most popular ways of preparing biaryls.3 The reaction is very robust and can easily be scaled to provide multigrams of material.4... [Pg.70]

Microwave-Assisted Transition Metal Catalyzed Coupling Reactions... [Pg.21]

AT-acetyltryptamines could be obtained via microwave-assisted transition-metal-catalyzed reactions on resin bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide. While acceptable reaction conditions for the application of microwave irradiation have been identified for Stille heteroaryla-tion reactions, the related Suzuki protocol on the same substrate gave poor results, since at a constant power of 60 W, no full conversion (50-60%) of resin-bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide could be obtained even when two consecutive cross-coupling reaction cycles (involving complete removal of reagents and by-products by washing off the resin) were used (Scheme 36). Also under conventional heating at 110 °C, and otherwise identical conditions, the Suzuki reactions proved to be difficult since two cross-coupling reaction cycles of 24 h had to be used to achieve full conversion. [Pg.174]

The last method for the preparation of 2-quinolones described in this chapter relies on a intramolecular Heck cyclization starting from heteroaryl-amides (Table 2) [57]. These are synthesized either from commercially available pyrrole- and thiophene-2-carboxylic acids (a, Table 2) or thiophene-and furan-3-carboxylic acids (b, Table 2) in three steps. The Heck cyclization is conventionally performed with W,Ar-dimethylacetamide (DMA) as solvent, KOAc as base and Pd(PPh3)4 as catalyst for 24 h at 120 °C resulting in the coupled products in 56-89% yields. As discussed in Sect. 3.4, transition metal-catalyzed reactions often benefit from microwave irradiation [58-61], and so is the case also for this intramolecular reaction. In fact, derivatives with an aryl iodide were successfully coupled by conventional methods, whereas the heteroarylbromides 18 and 19, shown in Table 2, could only be coupled in satisfying yields by using MAOS (Table 2). [Pg.320]

The Sonogashira reaction is a transition metal-catalyzed coupling reaction which is widely used for the preparation of alkyl-, aryl- and diaryl-substituted acetylenes (Table 4.7) [120]. This reaction is a key step in natural product synthesis and is also applied in optical and electronic applications. Sonogashira reactions involve the use of an organic solvent with a stoichiometric portion of a base for capturing the... [Pg.483]

Organic halides play a fundamental role in organic chemistry. These compounds are important precursors for carbocations, carbanions, radicals, and carbenes and thus serve as an important platform for organic functional group transformations. Many classical reactions involve the reactions of organic halides. Examples of these reactions include the nucleophilic substitution reactions, elimination reactions, Grignard-type reactions, various transition-metal catalyzed coupling reactions, carbene-related cyclopropanations reactions, and radical cyclization reactions. All these reactions can be carried out in aqueous media. [Pg.170]

There are many other transition-metal catalyzed coupling reactions that are based on organic halides in aqueous media. One example is the coupling of terminal alkyne with aryl halides, the Sonogashira coupling, which has been discussed in detail in the chapter on alkynes (Chapter 4). An example is the condensation of 2-propynyl or allyl halides with simple acetylenes in the presence of copper salts. [Pg.192]

After the initial two reports of Rh- and Co-catalyzed reductive aldol couplings, further studies did not appear in the literature until the late 1990s. Beyond 1998, several stereoselective and enantioselective reductive aldol reactions were developed, which are catalyzed by a remarkably diverse range of metal complexes, including those based upon Pd, Cu, Ir, and In. In this chapter, transition metal-catalyzed aldol, Michael, and Mannich reactions that proceed via transition metal hydride-promoted conjugate reduction are reviewed. [Pg.116]

Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

Domino transition metal-catalyzed processes can also start with a cross-coupling reaction most often, Suzuki, Stille and Sonogashira reactions are used in this context They can be combined with another Pd-catalyzed transformation, and a number of examples have also been reported where a pericydic reaction, usually a Diels-Alder reaction, follows. An interesting combination is also a Pd-catalyzed borina-tion followed by a Suzuki reaction. [Pg.386]

For the domino transition metal-catalyzed synthesis of macrocycles, conditions must be found for two distinct cross-coupling reactions, of which one is inter- and the other intramolecular. For this purpose, Zhu s group [115] has developed a process of a Miyura arylboronic ester formation followed by an intramolecular Suzuki reaction to give model compounds of the biphenomycin structure 6/1-232 containing an endo-aryl-aryl bond. [Pg.397]

Recent trend in the synthesis of olefinic pheromones is the use of transition metal-catalyzed cross coupling reaction for carbon-carbon bond formation. Scheme 8 summarizes a synthesis of the termite trail marker pheromone, (3Z,6Z)-3,6-dodecadien- l-ol (2) by Oehlschlager [19]. The key-step is the palladium-catalyzed cross-coupling of allylic chloride A and alkenylalane B. [Pg.9]


See other pages where Transition Metal-Catalyzed Coupling Reactions is mentioned: [Pg.307]    [Pg.307]    [Pg.219]    [Pg.219]    [Pg.612]    [Pg.217]    [Pg.472]    [Pg.489]    [Pg.163]    [Pg.276]    [Pg.279]    [Pg.535]    [Pg.130]    [Pg.4]    [Pg.198]    [Pg.207]    [Pg.33]    [Pg.300]    [Pg.185]    [Pg.114]    [Pg.370]    [Pg.117]    [Pg.119]    [Pg.128]   
See also in sourсe #XX -- [ Pg.833 , Pg.834 , Pg.835 , Pg.836 ]




SEARCH



Coupling transition metal-catalyzed

Cross-Coupling reactions, transition-metal-catalyzed Grignard reagents

Metal catalyzed coupling

Metal-catalyzed reactions

Metal-catalyzed reactions reaction

Metal-catalyzed-coupling reactions

Microwave-Assisted Transition Metal Catalyzed Coupling Reactions

Relevance to cross-coupling reactions catalyzed by transition metal complexes

Transition coupling

Transition coupling reaction

Transition metal catalyzed

Transition metal reactions

Transition metal-catalyzed reactions

Transition-Metal-Catalyzed Cross-Coupling Reactions of Organomagnesium Reagents

Transition-Metal-Catalyzed Cross-Coupling Reactions of Organozinc Reagents

Transition-metal catalyzed cross-coupling reactions

© 2024 chempedia.info