Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution asymmetric allylation

Helquist et al. [129] have reported molecular mechanics calculations to predict the suitability of a number of chiral-substituted phenanthrolines and their corresponding palladium-complexes for use in asymmetric nucleophilic substitutions of allylic acetates. Good correlation was obtained with experimental results, the highest levels of asymmetric induction being predicted and obtained with a readily available 2-(2-bornyl)-phenanthroline ligand (90 in Scheme 50). Kocovsky et al. [130] prepared a series of chiral bipyridines, also derived from monoterpene (namely pinocarvone or myrtenal). They synthesized and characterized corresponding Mo complexes, which were found to be moderately enantioselective in allylic substitution (up to 22%). [Pg.135]

The formation of chromane derivatives has also been realised in the palladium catalyzed intramolecular nucleophilic substitution of allyl carbonates (Tsuji-Trost reaction). In most cases the reaction is accompanied by the formation of a new centre of chirality. Using Trost s chiral ligand the ring closure was carried out in an enantioselective manner. The asymmetric allylation of the phenol derivative shown in 4.20. was achieved both in good yield and with excellent selectivity.23... [Pg.75]

Tan and co-workers [129] disclosed that bis(phenylsulfonyl)methane and fluori-nated bis(phenylsulfonyl)methane were good nucleophiles for asymmetric allylic substitution of BH carbonate under catalysis of 45 (entry 5). At the same time, Shibata and co-workers [130a] and Rios and co-workers [130b] reported the similar reaction while the former used FeCL as co-catalyst. [Pg.336]

Chiral pyridine-based ligands were, among various Ar,AT-coordinating ligands, more efficient associated to palladium for asymmetric nucleophilic allylic substitution. Asymmetric molybdenum-catalyzed alkylations, especially of non-symmetric allylic derivatives as substrates, have been very efficiently performed with bis(pyridylamide) ligands. [Pg.94]

Asymmetric allylic substitutions are widely applied in organic synthesis, using various metal complexes, chiral ligands, nucleophiles and allyl systems [39]. Although Pd is often the metal of choice, this is not the case for monosubstituted allylic substrates, where most Pd catalysts predominantly produce the achiral linear product. In contrast. Mo, W and Ir catalysts preferentially give rise to the desired branched products and, in recent years, a number of very effective Ir catalysts for various substrates have been developed [40]. Since, to the best of our... [Pg.10]

Takemoto and his co-workers developed asymmetric allylic alkylation of allylic phosphates with (diphenyl-iminolglycinates as carbon-centered nucleophiles (Equation (56))/" " In this reaction system, use of optically active bidentate phosphites 142 bearing an (ethylthio)ethyl group as chiral ligands promotes the allylic alkylation, and chiral /3-substituted a-amino acids are obtained with an excellent enantioslectivity. [Pg.106]

Whereas Pd-catalyzed asymmetric allylic substitution reactions, with carbon as well as with heteronucleophiles, are widespread in stereoselective catalysis, it seems unusual that sulfur nucleophiles are less commonly used. Therefore we tested our ligands in such a reaction. We employed ligands 2 and 3 successfully in the reaction of racemic 3-methoxycarbonyloxyhept-4-ene with lithium t-butylsulfinate in the presence of 1.5 mol% of Pd2dba3 and 4.5 mol% of the ligands. In all cases full conversion was achieved, but with marked differences in the product selectivities (Scheme 1.4.9, Table 1.4.7). [Pg.128]

Asymmetric allylation of carbon nucleophiles has been carried out extensively using Pd catalysts coordinated by various chiral phosphine ligands and even with nitrogen ligands, and ee > 90% has been achieved in several cases. However, in most cases, a high ee has been achieved only with the 1,3-diaryl-substituted allylic compounds 217, and the synthetic usefulness of the reaction is limited, Therefore, only references are cited[24,133],... [Pg.447]

An excellent review21 outlining the mechanism of diphenylphosphinobenzoic acid-based palladium-catalysed asymmetric substitution of allyl compounds with nucleophiles has been published. The mechanistic model developed for these reactions allows one to predict the stereochemistry of the product(s). [Pg.237]

P-Menthylphosphetanes 77, in which an optical active dioxolane group is introduced at the a-position, have also provided asymmetric catalytic activity in the palladium-catalyzed allylic nucleophilic substitution of 1,3-diphenyl-propenyl acetate with the sodium salt of dimethyl malonate (Equation 12). [Pg.495]

Transition metal (such as Pd, Ir, Mo and W)-catalyzed asymmetric allylic substitutions with various nucleophiles are widely employed in organic synthesis and played an important role in the area of asymmetric C-C bond formation. Trost, Helmchen, Pfaltz and others have focused primarily on the direct allylation of malonates by prochiral electrophiles ... [Pg.198]

In 1999 Trost and Schroder reported on the first asymmetric allylic alkylation of nonstabilized ketone enolates of 2-substituted cyclohexanone derivatives, e.g. 2-methyl-1-tetralone (45), by using a catalytic amount of a chiral palladium complex formed from TT-allylpaUadium chloride dimer and the chiral cyclohexyldiamine derivative 47 (equation 14). The addition of tin chloride helped to soften the lithium enolate by transmetala-tion and a slight increase in enantioselectivity and yield for the alkylated product 46 was observed. Besides allyl acetate also linearly substituted or 1,3-dialkyl substituted allylic carbonates functioned well as electrophiles. A variety of cyclohexanones or cyclopen-tanones could be employed as nucleophiles with comparable results . Hon, Dai and coworkers reported comparable results for 45, using ferrocene-modified chiral ligands similar to 47. Their results were comparable to those obtained by Trost. [Pg.365]

Reactions with Sulfur Nucleophiles. The use of sulfur nucleophiles in palladium-catalyzed allylic substitution reactions is less well documented than that of carbon, nitrogen and oxygen nucleophiles. The asymmetric synthesis of allylic sulfones utilizing a catalytic phase transfer system has been used to produce (35)-(phenylsulfonyl)cyclohex-l-ene on a 45 g scale (eq 10). In many cases, it has been reported that allylic carbonates are more reactive than allylic acetates in asymmetric allylic substitution... [Pg.102]

The resulting derivatives were applied with success in the standard asymmetric allylic alkylation (up to 97 % ee) [134, 136] or in transformations involving either specific allylic substrates (2-cycloalkenyl derivatives, up to >99% ee) [135, 137], unsymmetrical substrates (monosubstituted allyl acetate, up to 83% ee) [140], or especial nucleophiles (nitroalkanes [141], iminoesters [138 a], or diketones [139, 140, 142]). Such ligands were also effective in the formation of quaternary chiral carbon through allylic substitution (eq. (6)) [138, 143], deracemiza-tion of vinyl epoxides (up to 99% ee) [144], or alkylation of ketone enolates [138 b], and deracemization of allylic derivatives [145]. [Pg.1025]


See other pages where Nucleophilic substitution asymmetric allylation is mentioned: [Pg.343]    [Pg.7]    [Pg.74]    [Pg.169]    [Pg.193]    [Pg.206]    [Pg.211]    [Pg.75]    [Pg.76]    [Pg.215]    [Pg.253]    [Pg.2078]    [Pg.310]    [Pg.124]    [Pg.236]    [Pg.169]    [Pg.96]   


SEARCH



Allylation nucleophiles

Allylic substitution

Allylic substitution nucleophiles

Asymmetric allyl substitution

Asymmetric allylation

Asymmetric allylic substitution

Asymmetric nucleophilic allylic

Asymmetric nucleophilic allylic substitution

Asymmetric nucleophilic allylic substitution

Asymmetric reactions nucleophilic substitution, allylic derivatives

Kinetic resolution, nucleophilic substitution asymmetric allylation

Leaving groups nucleophilic substitution, asymmetric allylation

Nucleophilic allylic substitution

Prochiral nucleophiles, nucleophilic substitution asymmetric allylation

© 2024 chempedia.info