Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral palladium complexes

Helquist et al. [129] have reported molecular mechanics calculations to predict the suitability of a number of chiral-substituted phenanthrolines and their corresponding palladium-complexes for use in asymmetric nucleophilic substitutions of allylic acetates. Good correlation was obtained with experimental results, the highest levels of asymmetric induction being predicted and obtained with a readily available 2-(2-bornyl)-phenanthroline ligand (90 in Scheme 50). Kocovsky et al. [130] prepared a series of chiral bipyridines, also derived from monoterpene (namely pinocarvone or myrtenal). They synthesized and characterized corresponding Mo complexes, which were found to be moderately enantioselective in allylic substitution (up to 22%). [Pg.135]

In 2003, Sigman et al. reported the use of a chiral carbene ligand in conjunction with the chiral base (-)-sparteine in the palladium(II) catalyzed oxidative kinetic resolution of secondary alcohols [26]. The dimeric palladium complexes 51a-b used in this reaction were obtained in two steps from N,N -diaryl chiral imidazolinium salts derived from (S, S) or (R,R) diphenylethane diamine (Scheme 28). The carbenes were generated by deprotonation of the salts with t-BuOK in THF and reacted in situ with dimeric palladium al-lyl chloride. The intermediate NHC - Pd(allyl)Cl complexes 52 are air-stable and were isolated in 92-95% yield after silica gel chromatography. Two diaster corners in a ratio of approximately 2 1 are present in solution (CDCI3). [Pg.208]

Concerning enantioselective processes, Fujihara and Tamura have proved that palladium NPs containing (S)-BINAP (2,2 -bis(diphenylphosphino)-l,l -binaphthyl) as chiral stabiliser, catalyse the hydrosilylation of styrene with trichlorosilane, obtaining (S)-l-phenylethanol as the major isomer (ee = 75%) [42]. In contrast, the palladium complex [Pd(BINAP)(C3H5)]Cl is inactive for the same reaction [43]. [Pg.431]

Hydrosilylation of dienes accompanied by cyclization is emerging as a potential route to the synthesis of functionalized carbocycles. However, the utility of cycliza-tion/hydrosilylation has been Umited because of the absence of an asymmetric protocol. One example of asymmetric cycUzation/hydrosilylation has been reported very recently using a chiral pyridine-oxazoUne ligand instead of 1,10-phenanthroline of the cationic palladium complex (53) [60]. As shown in Scheme 3-21, the pyridine-oxazoUne Ugand is more effective than the bisoxazoUne ligand in this asymmetric cyclization/hydrosilylation of a 1,6-diene. [Pg.86]

In 2005, Carretero et al. reported a second example of chiral catalysts based on S/P-coordination employed in the catalysis of the enantioselective Diels-Alder reaction, namely palladium complexes of chiral planar l-phosphino-2-sulfenylferrocenes (Fesulphos). This new family of chiral ligands afforded, in the presence of PdCl2, high enantioselectivities of up to 95% ee, in the asymmetric Diels-Alder reaction of cyclopentadiene with A-acryloyl-l,3-oxazolidin-2-one (Scheme 5.17). The S/P-bidentate character of the Fesulphos ligands has been proved by X-ray diffraction analysis of several metal complexes. When the reaction was performed in the presence of the corresponding copper-chelates, a lower and opposite enantioselectivity was obtained. This difference of results was explained by the geometry of the palladium (square-planar) and copper (tetrahedral) complexes. [Pg.198]

In 2004, Molander et al. developed another type of chiral sulfur-containing ligands for the intermolecular Heck reaction. Thus, their corresponding novel cyclopropane-based phosphorus/sulfur palladium complexes proved to be active as catalysts for the reaction between phenyltriflate and dihydrofuran, providing at high temperature a mixture of the expected product and its iso-merised analogue (Scheme 7.7). The major isomer C was obtained with a maximum enantioseleetivity of 63% ee. [Pg.239]

At the beginning of the 1970s a convenient procedure was described for converting olefins into substituted butanedioates, namely through a Pd(II)-cata-lysed bisalkoxycarbonylation reaction. So far various catalytic systems have been applied to this process, but it took twenty years before the first examples of an enantioselective bisalkoxycarbonylation of olefins were reported. Ever since, the asymmetric bisalkoxycarbonylation of alkenes catalysed by palladium complexes bearing chiral ligands has attracted much attention. The products of these reactions are important intermediates in the syntheses of pharmaceuticals such as 2-arylpropionic acids, the most important class of... [Pg.350]

Helmchen and coworkers employed a,co-amino-1,3-dienes as substrates [51]. By using palladium complexes with chiral phosphino-oxazolines L as catalysts, an enantiomeric excess of up to 80 % was achieved. In a typical experiment, a suspension of Pd(OAc)2, the chiral ligand L, the aminodiene 6/1-90 and an aryltriflate in dimethylformamide (DMF) was heated at 100 °C for 10 days. Via the chiral palladium complex 6/1-91, the resulting cyclic amine derivative 6/1-92 was obtained in 47% yield and 80% ee (Scheme 6/1.23). Using aryliodides the reaction time is shorter, and the yield higher (61 %), but the enantiomeric excess is lower (67% ee). With BINAP as a chiral ligand for the Pd°-catalyzed transformation of 6/1-90 and aryliodide, an ee-value of only 12% was obtained. [Pg.374]

Asymmetric synthesis of tricyclic nitro ergoline synthon (up to 70% ee) is accomplished by intramolecular cyclization of nitro compound Pd(0)-catalyzed complexes with classical C2 symmetry diphosphanes.94 Palladium complexes of 4,5-dihydrooxazoles are better chiral ligands to promote asymmetric allylic alkylation than classical catalysts. For example, allylic substitution with nitromethane gives enantioselectivity exceeding 99% ee (Eq. 5.62).95 Phosphi-noxazolines can induce very high enatioselectivity in other transition metal-catalyzed reactions.96 Diastereo- and enantioselective allylation of substituted nitroalkanes has also been reported.9513... [Pg.146]

Enantioselective carbenoid cyclopropanation can be expected to occur when either an olefin bearing a chiral substituent, or such a diazo compound or a chiral catalyst is present. Only the latter alternative has been widely applied in practice. All efficient chiral catalysts which are known at present are copper or cobalt(II) chelates, whereas palladium complexes 86) proved to be uneflective. The carbenoid reactions between alkyl diazoacetates and styrene or 1,1 -diphenylethylene (Scheme 27) are usually chosen to test the efficiency of a chiral catalyst. As will be seen in the following, the extent to which optical induction is brought about by enantioselection either at a prochiral olefin or at a prochiral carbenoid center, varies widely with the chiral catalyst used. [Pg.159]

A variety of triazole-based monophosphines (ClickPhos) 141 have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes and their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides <06JOC3928>. A novel P,N-type ligand family (ClickPhine) is easily accessible using the Cu(I)-catalyzed azide-alkyne cycloaddition reaction and was tested in palladium-catalyzed allylic alkylation reactions <06OL3227>. Novel chiral ligands, (S)-(+)-l-substituted aryl-4-(l-phenyl) ethylformamido-5-amino-1,2,3-triazoles 142,... [Pg.229]

The reaction of racemic Sb-chiral l-phenyl-2-trimethylsilylstibindole with the optically active ortho-palladated benzylamine derivative, di-p-chlorobis (S)-2-[l-dimethylamino)ethyl]phenyl-C,N dipalladium, leads to diastereomeric complexes which were used for the separation of the enantiomers of the stibindoles.65 The molecular structures of the diastereomeric palladium complexes are depicted in Fig. 4. [Pg.99]

For example, cycloaddition of nitrone (643, R1 =Ph, R2 = Me) to DIO, catalyzed by chiral phosphine-palladium complexes (Fig. 2.42), gave isoxazolidines (644) in high yield with high enantioselectivity (794). [Pg.355]

The a-arylation of carbonyl compounds (sometimes in enantioselective version) such as ketones,107-115 amides,114 115 lactones,116 azlactones,117 malonates,118 piperidinones,119,120 cyanoesters,121,122 nitriles,125,124 sul-fones, trimethylsilyl enolates, nitroalkanes, esters, amino acids, or acids has been reported using palladium catalysis. The asymmetric vinylation of ketone enolates has been developed with palladium complexes bearing electron-rich chiral monodentate ligands.155... [Pg.314]

A hydrosilylation/cyclization process forming a vinylsilane product need not begin with a diyne, and other unsaturation has been examined in a similar reaction. Alkynyl olefins and dienes have been employed,97 and since unlike diynes, enyne substrates generally produce a chiral center, these substrates have recently proved amenable to asymmetric synthesis (Scheme 27). The BINAP-based catalyst employed in the diyne work did not function in enyne systems, but the close relative 6,6 -dimethylbiphenyl-2,2 -diyl-bis(diphenylphosphine) (BIPHEMP) afforded modest yields of enantio-enriched methylene cyclopentane products.104 Other reported catalysts for silylative cyclization include cationic palladium complexes.105 10511 A report has also appeared employing cobalt-rhodium nanoparticles for a similar reaction to produce racemic product.46... [Pg.809]


See other pages where Chiral palladium complexes is mentioned: [Pg.300]    [Pg.216]    [Pg.83]    [Pg.136]    [Pg.141]    [Pg.207]    [Pg.76]    [Pg.78]    [Pg.288]    [Pg.7]    [Pg.8]    [Pg.9]    [Pg.14]    [Pg.26]    [Pg.28]    [Pg.45]    [Pg.259]    [Pg.334]    [Pg.556]    [Pg.589]    [Pg.74]    [Pg.182]    [Pg.184]    [Pg.190]    [Pg.276]    [Pg.373]    [Pg.43]    [Pg.697]    [Pg.702]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Acetonitriles, chiral palladium complexes

Chiral complexes

Chiral ligands sulfur-palladium complexes

Chiral palladium complexes in situ generation

Chiral phosphines phosphorus-palladium complexes

Chirality complexes

Chirality/Chiral complexes

Cyclometallated chiral palladium complexes

DIOP ligands, chiral palladium complexes

Divalent chiral palladium complexes

Helical chirality palladium complexes

Mannich using chiral palladium complexe

Palladium complexes chiral squares

© 2024 chempedia.info