Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic acetate, also

In 1999 Trost and Schroder reported on the first asymmetric allylic alkylation of nonstabilized ketone enolates of 2-substituted cyclohexanone derivatives, e.g. 2-methyl-1-tetralone (45), by using a catalytic amount of a chiral palladium complex formed from TT-allylpaUadium chloride dimer and the chiral cyclohexyldiamine derivative 47 (equation 14). The addition of tin chloride helped to soften the lithium enolate by transmetala-tion and a slight increase in enantioselectivity and yield for the alkylated product 46 was observed. Besides allyl acetate also linearly substituted or 1,3-dialkyl substituted allylic carbonates functioned well as electrophiles. A variety of cyclohexanones or cyclopen-tanones could be employed as nucleophiles with comparable results . Hon, Dai and coworkers reported comparable results for 45, using ferrocene-modified chiral ligands similar to 47. Their results were comparable to those obtained by Trost. [Pg.365]

Alkylation of allylic acetates also occurred under these conditions, NEt3 - or better l,8-diazabicyclo[5.4.0]undec-7-ene (dbu) - being used as the base, as well as that of vinyl epoxides. [Pg.533]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

Numerous applications have been reported. A derivative of the (alkyn-1-yl)nucleosides 295. which have anticancer and antiviral activities, has been synthesized by this reaction. They are also used as chain-terminating nucleosides for DN.A. sequencing[l98,199]. In this reaction, use of DMF as the solvent is most important for successful operation[200]. Only the alkenyl bromide moiety in 2-bromo-3-aceto.xycycloheptene (296) reacts with alkynes without attacking the allylic acetate moiety[201]. [Pg.169]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

It is known that tr-allylpalladium acetate is converted into allyl acetate by reductive elimination when it is treated with CO[242,243]. For this reason, the carbonylation of allylic acetates themselves is difficult. The allylic acetate 386 is carbonylated in the presence of NaBr (20-50 mol%) under severe conditions, probably via allylic bromides[244]. However, the carbonylation of 5-phenyl-2,4-pentadienyl acetate (387) was carried out in the presence of EtiN without using NaBr at 100 °C to yield methyl 6-phenyl-3,5-hexadienoate (388)[245J. The dicarbonylation of l,4-diacetoxy-2-butene to form the 3-hexenedioate also proceeds by using tetrabutylphosphonium chloride as a ligand in 49% yield[246]. [Pg.341]

There are also palladium-catalysed procedures for allylation. Ethyl 3-bromo-l-(4-methylphenylsulfonyl)indole-2-carboxylate is allylated at C3 upon reaction with allyl acetate and hexabutylditin[27], Ihe reaction presumably Involves a ir-allyl-Pd intermediate formed from the allyl acetate, oxidative addition, transmetallation and cross coupling. [Pg.108]

For allyl acetate a significant deuterium isotope effect supports the hydrogen abstraction mechanism (Scheme 6,31).183 Allyl compounds with weaker CTT-X bonds (113 X=SR, S02R, Bi etc.) may also give chain transfer by an addition-fragmentation mechanism (Section 6.2.3). [Pg.319]

While asymmetric approaches are certainly important, other synthetically significant epoxidation protocols have also been reported. For example, buffered two-phase MCPBA systems are useful for epoxidations in which the alkenes and/or resultant epoxides are acid-sensitive. Bicarbonate works quite well for cinnamate derivatives (e.g., 55) <96SC2235> however, 2,6-di-t-butyl-pyridine was shown to give superior results in the case of certain allyl acetals (e.g., 57) <96SC2875>. [Pg.50]

The aziridine aldehyde 56 undergoes a facile Baylis-Hillman reaction with methyl or ethyl acrylate, acrylonitrile, methyl vinyl ketone, and vinyl sulfone [60]. The adducts 57 were obtained as mixtures of syn- and anfz-diastereomers. The synthetic utility of the Baylis-Hillman adducts was also investigated. With acetic anhydride in pyridine an SN2 -type substitution of the initially formed allylic acetate by an acetoxy group takes place to give product 58. Nucleophilic reactions of this product with, e. g., morpholine, thiol/Et3N, or sodium azide in DMSO resulted in an apparent displacement of the acetoxy group. Tentatively, this result may be explained by invoking the initial formation of an ionic intermediate 59, which is then followed by the reaction with the nucleophile as shown in Scheme 43. [Pg.117]

Helquist et al. [129] have reported molecular mechanics calculations to predict the suitability of a number of chiral-substituted phenanthrolines and their corresponding palladium-complexes for use in asymmetric nucleophilic substitutions of allylic acetates. Good correlation was obtained with experimental results, the highest levels of asymmetric induction being predicted and obtained with a readily available 2-(2-bornyl)-phenanthroline ligand (90 in Scheme 50). Kocovsky et al. [130] prepared a series of chiral bipyridines, also derived from monoterpene (namely pinocarvone or myrtenal). They synthesized and characterized corresponding Mo complexes, which were found to be moderately enantioselective in allylic substitution (up to 22%). [Pg.135]

Allylic substitutions catalysed by palladium NHC complexes have been studied and the activity and selectivity of the catalysts compared to analogous Pd phosphine complexes. A simple catalytic system involves the generation of a Pd(NHC) catalyst in situ in THF, from Pdj(dba)j, imidazolium salt and Cs COj. This system showed very good activities for the substitution of the allylic acetates by the soft nucleophilic sodium dimethyl malonate (2.5 mol% Pdj(dba)3, 5 mol% IPr HCl, 0.1 equiv. C (CO ), THF, 50°C) (Scheme 2.22). Generation of the malonate nncleophile can also be carried out in situ from the dimethyhnalonate pro-nucleo-phile, in which case excess (2.1 equivalents) of Cs COj was used. The nature of the catalytic species, especially the number of IPr ligands on the metal is not clear. [Pg.49]

Allylic stannanes can be prepared from allylic halides and sulfonates by displacement with or LiSnMe3 or LiSnBu3.146 They can also be prepared by Pd-catalyzed substitution of allylic acetates and phosphates using (C2H5)2AlSn... [Pg.834]

Lewis acid-mediated ionization of acetals also generates electrophilic carbon intermediates that react readily with allylic stannanes.190 Dithioacetals can be activated by the sulfonium salt [(CH3)2SSCH3]+BF4,191... [Pg.847]

Recent papers have disclosed that Pd(0) catalyzed allylic alkylations under neutral conditions are not limited to allylic carbonates or epoxides but also can be extended in many cases to the more popular allylic acetates (Eq. 5.58).sla... [Pg.142]

Further investigations using model compounds showed that the formation of PdCl2 by a reaction with the solvent, as suggested by Brinkmann el al. [30], was also not responsible for the observed rapid deactivation. Palladium leaching after formation of Pd(0) was also excluded by experiments. The authors concluded therefore that the presence of allyl acetate facilitated the decomposition. [Pg.84]


See other pages where Allylic acetate, also is mentioned: [Pg.546]    [Pg.461]    [Pg.616]    [Pg.227]    [Pg.77]    [Pg.546]    [Pg.461]    [Pg.616]    [Pg.227]    [Pg.77]    [Pg.307]    [Pg.311]    [Pg.337]    [Pg.339]    [Pg.616]    [Pg.273]    [Pg.286]    [Pg.140]    [Pg.361]    [Pg.535]    [Pg.545]    [Pg.546]    [Pg.708]    [Pg.923]    [Pg.155]    [Pg.278]    [Pg.165]    [Pg.8]    [Pg.20]    [Pg.39]    [Pg.681]    [Pg.398]    [Pg.140]    [Pg.51]    [Pg.220]    [Pg.368]   


SEARCH



2- allyl acetate allylation

Acetal allylation

Acetals allylations

Allyl acetate

Allylic acetals

Allylic acetates

Allylic acetates acetate

© 2024 chempedia.info