Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic addition reactions with sulfur nucleophiles

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Several thiols occur naturally for example, skunk secretion contains 3-methyll-butanethiol and cut onions evolve 1-propanethiol, and the thiol group of the natural amino acid cysteine plays a vital role in the biochemistry of proteins and enzymes (see Introduction, p. 2). Primary and secondary thiols may be prepared from alkyl halides (RX) by reaction with excess sodium thiolate (SN2 nucleophilic substitution by HST) or via the Grignard reagent and reaction with sulfur. Tertiary thiols can be obtained in good yields by addition of hydrogen sulfide to a suitable alkene. Thiols can also be prepared by reduction of sulfonyl chlorides (Scheme l).la,2a... [Pg.47]

Barton and Crich reported the first examples of the uses of 2-substituted allylic sulfur compounds [53]. Their initial experiments with additions of simple alkyl radicals to allyl sulfides, sulfoxides and sulfones were relatively unsuccessful. This failure was largely due to the fact that the nucleophilic alkyl radicals, which were generated by photolysis of the corresponding Barton ester, underwent addition to a second equivalent of Barton ester faster than they added to the allyl transfer agent. Reactions were much more successful with the electron-deficient acrylate reagent 93 (Fig. 4). Crich was later able to show that this same reagent underwent addition reactions with an acyl radical derived from an acyl phenyl telluride [54]. [Pg.63]

In addition to accelerating degradation rates for halogenated aliphatics, reaction with sulfur nucleophiles will have significant consequences with respect to reaction product distributions. Schwarzenbach et al. (1985) have observed the formation of thiols and dialkyl sulfides from the Sn2 reactions of primary alkyl bromides with HS (Figure 2.12). [Pg.142]

The addition reactions we have met so far have involved electrophilic addition across the C = C bond in alkene molecules (see page 209). Aldehydes and ketones both undergo addition reactions with hydrogen cyanide, HCN. In this case, addition of HCN takes place across the C=0 bond. However, the attack is by a nucleophile, not an electrophile. We can show this using the nucleophilic addition reaction of propanal with HCN. The HCN is generated in situ (in the reaction vessel) by the reaction of sodium cyanide, NaCN, and dilute sulfuric acid. [Pg.247]

The action of sulfur nucleophiles like sodium bisulfite and thiophenols causes even pteridines that are unreactive towards water or alcohols to undergo covalent addition reactions. Thus, pteridin-7-one smoothly adds the named S-nucleophiles in a 1 1 ratio to C-6 (65JCS6930). Similarly, pteridin-4-one (73) yields adducts (74) in a 2 1 ratio at C-6 and C-7 exclusively (equation 14), as do 4-aminopteridine and lumazine with sodium bisulfite. Xanthopterin forms a 7,8-adduct and 7,8-dihydropterin can easily be converted to sodium 5,6,7,8-tetrahydropterin-6-sulfonate (66JCS(C)285), which leads to pterin-6-sulfonic acid on oxidation (59HCA1854). [Pg.287]

Sulfur-stabilized ylides underwent photodriven reaction with chromium alkoxy-carbenes to produce 2-acyl vinyl ethers as E/Z mixtures with the E isomer predominating (Table 22) [ 121-123]. The reaction is thought to proceed by nucleophilic attack of the ylide carbon at the chromium carbene carbon followed by elimination of (CO)5CrSMe2. The same reaction occurred thermally, but at a reduced rate. Sulfilimines underwent a similar addition/elimination process to produce imidates or their hydrolysis products (Table 23) [ 124,125]. Again the reaction also proceeded thermally but much more slowly. Less basic sulfilimines having acyl or sulfonyl groups on nitrogen failed to react. [Pg.191]

Compound 874, as a representative of derivatives with an electron-withdrawing substituent at C-[1 of the vinyl group, is easily prepared by elimination of one benzotriazole from 2,2-/fo(benzotriazol-l-yl)ethyl methyl ketone 873. The stereoselective elimination catalyzed by NaOH gives exclusively the (E) isomer of derivative 874. Addition of nucleophiles to the double bond of vinyl ketone 874 followed by elimination of benzotriazole leads to a,P unsaturated ketones 875. Amines used as nucleophiles do not need any catalysis, but reactions with carbon and sulfur nucleophiles require addition of a base. The total effect is nucleophilic substitution of the benzotriazolyl group at the i-carbon of orji-iinsaturatcd ketone (Scheme 142) <1996SC3773>. [Pg.99]

Interesting examples of the addition of N-nucleophiles to nitrile oxides are syntheses of chelated Z-amidoxime, N-[2-(dimethylaminomethyl)phenyl]mesitylene-carboamidoxime (118), and pyranosyl amidoximes (119) from the respective nitrile oxides and amines. Aromatic aldoximes undergo unusual reactions with chloramine-T (4 equiv, in refluxing MeOH). N-(p-toly 1 )-N-(p-tosy 1 )benzamides are formed via addition of 2 equiv of chloramine-T to the intermediate nitrile oxide followed by elimination of sulfur dioxide (120). [Pg.17]

Let us conclude this discussion of the elimination-addition pathway for sulfonyl substitutions by noting some points about the behavior of sulfenes in their reactions with nucleophiles. Attack of a nucleophile Nu- on a sulfene normally occurs at sulfur to give the a-sulfonyl carbanion C—S02Nu. [Pg.170]

In view of the stereochemical behavior in the additions to alkenes and dienes, the authors suggest that the reaction proceeds via a stepwise electrophilic addition126. However, in this case the two sulfur atoms of the dithioether dication are positively charged. In the reaction with multiple bonds, therefore, one of these sulfur atoms should be an electrophilic center whereas the other one should simultaneously be a nucleophilic center. In... [Pg.605]

By far most of the reports on addition reactions of hetero-nucleophiles to activated dienes deal with sulfur-nucleophiles17,48,80,120-137, in particular in the synthesis of 7/3-sulfur-substituted steroids which, like their carbon-substituted counterparts (Section n.A), are of interest because of their ability to inhibit the biosynthesis of estrogens80,129-137. Early investigations17,120-122 concentrated on simple acyclic Michael acceptors like methyl sorbate and 2,4-pentadienenitrile. Bravo and coworkers120 observed the formation of a 3 1 mixture of the 1,6- and 1,4-adduct in the reaction of methyl sorbate with methanethiol in basic medium (equation 39). In contrast to this, 2,4-pentadienenitrile adds various thiols regioselectively at C-5, i.e. in a 1,6-fashion (equation 40)17,121,122, and the same is true for reactions of this substrate with hydrogen sulfide (equation 41), sodium bisulfite and ethyl thioglycolate17. [Pg.664]

The addition-elimination mechanism also provides a reasonable explanation for nucleophilic substitution reactions at sulfur that occur with retention of configuration. It is assumed that nucleophilic attack occurs at sulfur in an apical position opposite a substituent... [Pg.418]

As well as the Bingel reaction and its modifications some more reactions that involve the addition-elimination mechanism have been discovered. 1,2-Methano-[60]fullerenes are obtainable in good yields by reaction with phosphorus- [44] or sulfur-ylides [45,46] or by fluorine-ion-mediated reaction with silylated nucleophiles [47]. The reaction with ylides requires stabilized sulfur or phosphorus ylides (Scheme 3.9). As well as representing a new route to l,2-methano[60]fullerenes, the synthesis of methanofullerenes with a formyl group at the bridgehead-carbon is possible. This formyl-group can be easily transformed into imines with various aromatic amines. [Pg.83]


See other pages where Nucleophilic addition reactions with sulfur nucleophiles is mentioned: [Pg.178]    [Pg.666]    [Pg.216]    [Pg.201]    [Pg.201]    [Pg.310]    [Pg.666]    [Pg.179]    [Pg.861]    [Pg.22]    [Pg.140]    [Pg.145]    [Pg.755]    [Pg.213]    [Pg.29]    [Pg.2]    [Pg.528]    [Pg.229]    [Pg.113]    [Pg.307]    [Pg.29]    [Pg.360]    [Pg.1009]    [Pg.70]    [Pg.339]    [Pg.364]    [Pg.491]    [Pg.1001]    [Pg.1011]    [Pg.547]    [Pg.418]    [Pg.295]    [Pg.3]    [Pg.262]    [Pg.51]    [Pg.868]   
See also in sourсe #XX -- [ Pg.945 ]




SEARCH



Addition reactions nucleophilic

Nucleophile addition reactions

Nucleophiles addition reactions

Nucleophiles addition with

Nucleophiles, sulfur

Nucleophilic addition sulfur nucleophiles

Nucleophilic sulfur

Reaction with nucleophiles

Sulfur nucleophile

Sulfur nucleophiles, addition with

Sulfur nucleophiles, reaction

Sulfur reaction with

Sulfur-addition reaction

© 2024 chempedia.info