Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction addition-elimination, nucleophilic

Typical phase transfer catalysis in liquid-liquid systems combines processes in which Na+ or K+ salts of inorganic and organic anions derived from strong adds (phenolates, thiolates, carboxylates, etc.) are continuously transferred from aqueous (often alkaline) solutions to the organic phase by the phase transfer catalysts. Applications include nucleophilic substitution, addition, elimination, oxidation, and reduction reactions. [Pg.177]

Whereas fluorine in saturated straight-chain aliphatic compounds is not susceptible to nucleophilic replacement, its reactivity towards sulfur nucleophiles is markedly enhanced by an adjacent aromatic ring (e.g., in benzyl fluorides) as well as by double bonds. Thus, perfiuoroalkcncs are readily attacked by nucleophiles their addition-elimination reactions are discussed in Vol. ElOb/Part 1, p618tf. [Pg.426]

R-Li (alkyllithium) Methyllithium Butyllithium sec-Butyllithium fert-Butyllithium Strong base Strong nucleophile when R is not bulky. Deprotonation of weak organic acids, E2 eliminations Sn2/Sn2 displacements, addition reactions, addition-elimination reactions... [Pg.144]

Reactions of the chloro compounds with lithium dimethylamide are complicated by the fact that nucleophilic displacement of hydrogen often precedes that of chlorine, giving complex mixtures of products.68-123 The results obtained in reactions of potassium amide with chloro- and iodobenzo [c] cin-nolines show that elimination-addition processes via arynes 93 and 94 are more important than direct nucleophilic displacement (addition-elimination).163 Surprisingly, no l-aminobenzo[c]cinnoline is formed from the 1-and 2-halogeno compounds, while 4-chlorobenzo[c]cinnoline gives small amounts of 2-aminobenzo[c]cinnoline by a 1,3-displacement. [Pg.185]

Some properties of diethyl allylphosphonate have been investigated, in particular the behaviour of its anion (500) towards < /t-unsaturated ketones and carboxylic esters. Although in. some cases the conjugate addition of the anion has been observed, e.g. in the formation of (501) and (502), in most ca.ses the reaction leads to carbocyclic products. y-Nucleophilicity, with addition-elimination, has been observed in reactions with e.g. ( )-4-methoxybut-3-en-2-one, when the final product is (503), following expulsion of the methoxy group. A third mode of reaction consists of multiple addition ... [Pg.186]

The introduction of mono-, di-, and oligosaccharide units on dendritic surfaces is usually carried out as the final synthetic step in monodendron and dendrimer synthesis. For this purpose, well-known polymer analogous/ organic conversion steps are used amidation, esterification, reductive amina-tion, nucleophilic substitution, addition/elimination, thiol-ene reaction, 1,3-dipolar cycloaddition, and others (Fig. 5.22). [Pg.209]

In addition to organolithium reagents, several other nucleophiles undergo addition-elimination reactions with triethylperfluorovinylsilane (60). [Pg.165]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

A number of compounds of the general type H2NZ react with aldehydes and ketones m a manner analogous to that of primary amines The carbonyl group (C=0) IS converted to C=NZ and a molecule of water is formed Table 17 4 presents exam pies of some of these reactions The mechanism by which each proceeds is similar to the nucleophilic addition-elimination mechanism described for the reaction of primary amines with aldehydes and ketones... [Pg.726]

The generally accepted mechanism for nucleophilic aromatic substitution m nitro substituted aryl halides illustrated for the reaction of p fluoromtrobenzene with sodium methoxide is outlined m Figure 23 3 It is a two step addition-elimination mechanism, m which addition of the nucleophile to the aryl halide is followed by elimination of the halide leaving group Figure 23 4 shows the structure of the key intermediate The mech anism is consistent with the following experimental observations... [Pg.977]

The product of this reaction as its sodium salt is called a Meisenheimer complex after the Ger man chemist Jacob Meisenheimer who reported on their formation and reactions in 1902 A Meisenheimer complex corresponds to the product of the nucleophilic addition stage in the addition-elimination mechanism for nucleophilic aromatic substitution... [Pg.991]

The reaction of benzenesulfomc acid with sodium hydroxide (first entry m Table 24 3) proceeds by the addition-elimination mechanism of nucleophilic aromatic substi... [Pg.1000]

Nucleophilic aromatic substitution (Chapter 23) A reaction m which a nucleophile replaces a leaving group as a sub stituent on an aromatic nng Substitution may proceed by an addition-elimination mechanism or an elimination-addition mechanism... [Pg.1289]

Generally, the reactions of halopyrazines and haloquinoxalines with nucleophiles are believed to proceed by way of addition/elimination sequences, although there are clear-cut examples where this is not the case (see Section 2.14.2.2) and, consistent with a mechanism which involves bond forming, rather than bond breaking, reactions in the rate-determining step, fluoro derivatives are considerably more reactive ca. xlO ) than the corresponding chloro derivatives. [Pg.176]

The 3-substituents in 3-nitro- and 3-phenylsulfonyl-2-isoxazolines were displaced by a variety of nucleophiles including thiolate, cyanide and azide ions, ammonia, hydride ions and alkoxides. The reaction is pictured as an addition-elimination sequence (Scheme 54) (72MI41605, 79JA1319, 78JOC2020). [Pg.39]

Kinetic studies have shown that the enolate and phosphorus nucleophiles all react at about the same rate. This suggests that the only step directly involving the nucleophile (step 2 of the propagation sequence) occurs at essentially the diffusion-controlled rate so that there is little selectivity among the individual nucleophiles. The synthetic potential of the reaction lies in the fact that other substituents which activate the halide to substitution are not required in this reaction, in contrast to aromatic nucleophilic substitution which proceeds by an addition-elimination mechanism (see Seetion 10.5). [Pg.731]

A fluormated enol ether formed by the reaction of sodium ethoxide with chlorotnfluoroethylene is much less reactive than the starting fluoroolefin To replace the second fluorine atom, it is necessary to reflux the reaction mixture. The nucleophilic substitution proceeds by the addition-elimination mechanism [30] (equation 26). [Pg.452]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

The nucleophilic reaction of bromotrifluoroethene with alkoxides yields not only the expected addition and addition-elimination products but also a product from a bromophilic reaction of the carbanion intermediate [6] (equation 3) Similar are the reactions of sodium phenoxide with perfluorovinyl ethers in the presence of hexachloroethane or selected vicinal dibromoperfluoroalkanes The intermediate carbanion is trapped in high yield by these sources of Cl or Br, which suggests a... [Pg.729]

The addition of nucleophiles to cyclic fluoroolefins has been reviewed by Park et al. [2 ]. The reaction with alcohols proceeds by addition-elimination to yield the cyclic vinylic ether, as illustrated by tlie reaction of l,2-dichloro-3,3-di-fluorocyclopropene Further reaction results in cyclopropane ring opening at the bond opposite the difluoromethylene carbon to give preferentially the methyl and ortho esters of (Z)-3-chloro-2-fluoroacrylic acid and a small amount of dimethyl malonate [29] (equation 8). [Pg.731]

The nucleophilic attack of nitrogen bases leads to a variety of products as the result of addition or addition-elimination reactions The regioselectivity resembles that of attack by alcohols and alkoxides an intermediate carbanion is believed to be involved In the absence of protic reagents, the fluorocarbanion generated by the addition of sodium azide to polyfluonnated olefins can be captured by carbon dioxide or esters of fluonnated acids [J 2, 3] (equation I)... [Pg.742]

Fluoride ion produced from the nucleophilic addition-elimination reactions of fluoroolefins can cataly7e isomerizations and rearrangements The reaction of per fluoro-3-methyl-l-butene with dimethylamine gives as products 1-/V,/Vdimeth-ylamino-1,1,2,2,4,4,4-heptafluoro-3-trifluoromethylbutane, N,W-dimetliyl-2,2,4,4,4-pentafluoro 3 trifluoromethylbutyramide, and approximately 3% of an unidentified olefin [10] The butylamide results from hydrolysis of the observed tertiary amine, and thus they share a common intermediate, l-Al,A -dimethylamino-l,l 24 44-hexafluoro-3-trifluoromethyl-2-butene, the product from the initial addition-elimination reaction (equation 4) The expected product from simple addition was not found... [Pg.743]

The reaction of benzenesulfonic acid with sodium hydroxide (first entry in Table 24.3) proceeds by the addition-elimination mechanism of nucleophilic aromatic substitution (Section 23.6). Hydroxide replaces sulfite ion (S03 ) at the carbon atom that bear s the leaving group. Thus, p-toluenesulfonic acid is converted exclusively to p-cresol by an analogous reaction ... [Pg.1000]

When written in this way it is clear what is happening. The mechanisms of these reactions are probably similar, despite the different p values. The distinction is that in Reaction 10 the substituent X is on the substrate, its usual location but in Reaction 15 the substituent changes have been made on the reagent. Thus, electron-withdrawing substituents on the benzoyl chloride render the carbonyl carbon more positive and more susceptible to nucleophilic attack, whereas electron-donating substituents on the aniline increase the electron density on nitrogen, also facilitating nucleophilic attack. The mechanism may be an addition-elimination via a tetrahedral intermediate ... [Pg.331]

The majority of analgesics can be classified as either central or peripheral on the basis of their mode of action. Structural characteristics usually follow the same divisions the former show some relation to the opioids while the latter can be recognized as NSAlD s. The triamino pyridine 17 is an analgesic which does not seem to belong stmcturally to either class. Reaction of substituted pyridine 13 (obtainable from 12 by nitration ) with benzylamine 14 leads to the product from replacement of the methoxyl group (15). The reaction probably proceeds by the addition elimination sequence characteristic of heterocyclic nucleophilic displacements. Reduction of the nitro group with Raney nickel gives triamine 16. Acylation of the product with ethyl chlorofor-mate produces flupirtine (17) [4]. [Pg.102]


See other pages where Reaction addition-elimination, nucleophilic is mentioned: [Pg.70]    [Pg.54]    [Pg.7]    [Pg.979]    [Pg.1]    [Pg.87]    [Pg.165]    [Pg.678]    [Pg.224]    [Pg.997]    [Pg.979]    [Pg.212]    [Pg.191]    [Pg.76]    [Pg.55]    [Pg.243]   


SEARCH



1,4 - Addition-eliminations 670 1,2-ADDITIONS

Addition reactions nucleophilic

Addition-elimination

Elimination 1,6-addition, eliminative

Elimination addition reactions nucleophilic aromatic substitution with

Elimination-addition reactions

Nucleophile addition reactions

Nucleophiles addition reactions

Nucleophilic Aromatic Substitution An Addition-Elimination Reaction

Nucleophilic substitution process elimination/addition reactions

Substitution reactions aromatic nucleophilic (addition-elimination

The General Mechanism for Nucleophilic Addition-Elimination Reactions

© 2024 chempedia.info