Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear temperature-dependent

In the following discussion, the nuclear temperature dependence of T e will be considered to be negligible, because they are functions of... [Pg.193]

Laser Raman diagnostic teclmiques offer remote, nonintnisive, nonperturbing measurements with high spatial and temporal resolution [158], This is particularly advantageous in the area of combustion chemistry. Physical probes for temperature and concentration measurements can be debatable in many combustion systems, such as furnaces, internal combustors etc., since they may disturb the medium or, even worse, not withstand the hostile enviromnents [159]. Laser Raman techniques are employed since two of the dominant molecules associated with air-fed combustion are O2 and N2. Flomonuclear diatomic molecules unable to have a nuclear coordinate-dependent dipole moment caimot be diagnosed by infrared spectroscopy. Other combustion species include CFl, CO2, FI2O and FI2 [160]. These molecules are probed by Raman spectroscopy to detenuine the temperature profile and species concentration m various combustion processes. [Pg.1215]

Nonferrous alloys account for only about 2 wt % of the total chromium used ia the United States. Nonetheless, some of these appHcations are unique and constitute a vital role for chromium. Eor example, ia high temperature materials, chromium ia amounts of 15—30 wt % confers corrosion and oxidation resistance on the nickel-base and cobalt-base superaHoys used ia jet engines the familiar electrical resistance heating elements are made of Ni-Cr alloy and a variety of Ee-Ni and Ni-based alloys used ia a diverse array of appHcations, especially for nuclear reactors, depend on chromium for oxidation and corrosion resistance. Evaporated, amorphous, thin-film resistors based on Ni-Cr with A1 additions have the advantageous property of a near-2ero temperature coefficient of resistance (58). [Pg.129]

The measurement of correlation times in molten salts and ionic liquids has recently been reviewed [11] (for more recent references refer to Carper et al. [12]). We have measured the spin-lattice relaxation rates l/Tj and nuclear Overhauser factors p in temperature ranges in and outside the extreme narrowing region for the neat ionic liquid [BMIM][PFg], in order to observe the temperature dependence of the spectral density. Subsequently, the models for the description of the reorientation-al dynamics introduced in the theoretical section (Section 4.5.3) were fitted to the experimental relaxation data. The nuclei of the aliphatic chains can be assumed to relax only through the dipolar mechanism. This is in contrast to the aromatic nuclei, which can also relax to some extent through the chemical-shift anisotropy mechanism. The latter mechanism has to be taken into account to fit the models to the experimental relaxation data (cf [1] or [3] for more details). Preliminary results are shown in Figures 4.5-1 and 4.5-2, together with the curves for the fitted functions. [Pg.171]

The equation for the decay of a nucleus (parent nucleus - daughter nucleus + radiation) has exactly the same form as a unimolecular elementary reaction (Section 13.7), with an unstable nucleus taking the place of a reactant molecule. This type of decay is expected for a process that does not depend on any external factors but only on the instability of the nucleus. The rate of nuclear decay depends only on the identity of the isotope, not on its chemical form or temperature. [Pg.831]

The most amazing are the results for weak coupling. It appears that the gap function could have sizable values at finite temperature even if it is exactly zero at zero temperature. This possibility comes about only because of the strong influence of the neutrality condition on the ground state preference in quark matter. Because of the thermal effects, the positive electrical charge of the diquark condensate is easier to accommodate at finite temperature. We should mention that somewhat similar results for the temperature dependence of the gap were also obtained in Ref. [21] in a study of the asymmetric nuclear matter, and in Ref. [22] when number density was fixed. [Pg.233]

Does T differ significantly from unity in typical electron transfer reactions It is difficult to get direct evidence for nuclear tunnelling from rate measurements except at very low temperatures in certain systems. Nuclear tunnelling is a consequence of the quantum nature of oscillators involved in the process. For the corresponding optical transfer, it is easy to see this property when one measures the temperature dependence of the intervalence band profile in a dynamically-trapped mixed-valence system. The second moment of the band,... [Pg.313]

A meaningful comparison of kinetic data obtained in different biological systems should be based on the determination of the respective contributions of the nuclear and electronic factors. The most direct method of separating these contributions consists in the measurement of the temperature dependence of the rate over the widest available range. In the following, we distinguish between experiments performed at room temperature, which are usually interpreted by assuming that all the nuclear motions coupled to the transfer may be described classically, and experiments performed at lower temperature, in which the quantified character of particular vibrational modes may appear. [Pg.25]

We may illustrate this approach to the determination of the nuclear factor by the elegant studies performed by Gray and co-workers, who have determined the thermodynamic properties and the rate temperature dependence for the electron transfer between Ru(NH3) covalently bound to the histidine residues of some proteins, and the redox eenter of these proteins [110, 111, 112, 113]. The experimental results obtained for cytochrome c [110] and azurin [111, 112] are very similar. Using the thermodynamic data and the value or the upper limit of Ea reported in these studies, we deduce from Eq. (23) ... [Pg.26]

The Mossbauer effect involves the resonance fluorescence of nuclear gamma radiation and can be observed during recoilless emission and absorption of radiation in solids. It can be exploited as a spectroscopic method by observing chemically dependent hyperfine interactions. The recent determination of the nuclear radius term in the isomer shift equation for shows that the isomer shift becomes more positive with increasing s electron density at the nucleus. Detailed studies of the temperature dependence of the recoil-free fraction in and labeled Sn/ show that the characteristic Mossbauer temperatures Om, are different for the two atoms. These results are typical of the kind of chemical information which can be obtained from Mossbauer spectra. [Pg.1]

Meyer, C., Pascui, O., Reichert, D., Sander, L.C., Wise, S.A., and Albert, K., Conformational temperature dependence of a poly(ethylene-co-acrylic acid) stationary-phase investigated by nuclear magnetic resonance spectroscopy and liquid chromatography, J. Sep. Set, 29, 820, 2006. [Pg.298]


See other pages where Nuclear temperature-dependent is mentioned: [Pg.1591]    [Pg.354]    [Pg.324]    [Pg.46]    [Pg.1087]    [Pg.1260]    [Pg.313]    [Pg.67]    [Pg.26]    [Pg.39]    [Pg.388]    [Pg.1255]    [Pg.182]    [Pg.139]    [Pg.272]    [Pg.164]    [Pg.153]    [Pg.126]    [Pg.140]    [Pg.324]    [Pg.145]    [Pg.70]    [Pg.497]    [Pg.252]    [Pg.381]    [Pg.31]    [Pg.389]    [Pg.50]    [Pg.127]    [Pg.122]    [Pg.299]    [Pg.282]    [Pg.3]    [Pg.6]    [Pg.23]    [Pg.24]    [Pg.27]    [Pg.82]    [Pg.306]    [Pg.306]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Chemically induced dynamic nuclear temperature-dependent

Nuclear magnetic resonance Temperature-dependent

Nuclear magnetic resonance temperature dependence

Nuclear spin relaxation rate, temperature dependence

Nuclear temperature

© 2024 chempedia.info