Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance gases

For bulk structural detemiination (see chapter B 1.9). the main teclmique used has been x-ray diffraction (XRD). Several other teclmiques are also available for more specialized applications, including electron diffraction (ED) for thin film structures and gas-phase molecules neutron diffraction (ND) and nuclear magnetic resonance (NMR) for magnetic studies (see chapter B1.12 and chapter B1.13) x-ray absorption fine structure (XAFS) for local structures in small or unstable samples and other spectroscopies to examine local structures in molecules. Electron microscopy also plays an important role, primarily tlirough unaging (see chapter B1.17). [Pg.1751]

Analytical methods iaclude thin-layer chromatography (69), gas chromatography (70), and specific methods for determining amine oxides ia detergeats (71) and foods (72). Nuclear magnetic resonance (73—75) and mass spectrometry (76) have also been used. A frequentiy used procedure for iadustrial amine oxides (77) iavolves titratioa with hydrochloric acid before and after conversion of the amine to the quaternary ammonium salt by reaction with methyl iodide. A simple, rapid quaHty control procedure has been developed for the deterrniaation of amine oxide and unreacted tertiary amine (78). [Pg.192]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

The crystalline mineral silicates have been well characterized and their diversity of stmcture thoroughly presented (2). The stmctures of siHcate glasses and solutions can be investigated through potentiometric and dye adsorption studies, chemical derivatization and gas chromatography, and laser Raman, infrared (ftir), and Si Fourier transform nuclear magnetic resonance ( Si ft-nmr) spectroscopy. References 3—6 contain reviews of the general chemical and physical properties of siHcate materials. [Pg.3]

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been pubUshed as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance Hquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

The side-chain chlorine contents of benzyl chloride, benzal chloride, and benzotrichlorides are determined by hydrolysis with methanolic sodium hydroxide followed by titration with silver nitrate. Total chlorine determination, including ring chlorine, is made by standard combustion methods (55). Several procedures for the gas chromatographic analysis of chlorotoluene mixtures have been described (56,57). Proton and nuclear magnetic resonance shifts, characteristic iafrared absorption bands, and principal mass spectral peaks have been summarized including sources of reference spectra (58). Procedures for measuring trace benzyl chloride ia air (59) and ia water (60) have been described. [Pg.61]

When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

Very little in the way of advances has occurred since 1971 in the applications of ultraviolet or infrared spectroscopy to the analysis of fluonnated organic compounds Therefore, only gas-liquid chromatography, liquid chromatography, mass spectrometry, and electron scattering for chemical analysis (ESCA) are discussed The application of nuclear magnetic resonance (NMR) spectroscopy to the analysis of fluonnated organic compounds is the subject of another section of this chapter... [Pg.1029]

These special features are explained by an interaction between the proton and one of the water molecules, which is not merely electrostatic but also covalent. This yields a new chemical species, the hydroxonium ion, HjO. The existence of such ions was demonstrated in the gas phase by mass spectrometry and in the solid phase by X-ray diffraction and nuclear magnetic resonance. The H -H20 bond has an energy of 712kJ/mol, which is almost two-thirds of the total proton hydration energy. [Pg.111]

T. W. M. Fan, A. N. Lane, D. Crowley, and R. M. Higa.shi, Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectro.scopy. Anal. Biochem. 257 57 (1997). [Pg.35]


See other pages where Nuclear magnetic resonance gases is mentioned: [Pg.277]    [Pg.183]    [Pg.27]    [Pg.236]    [Pg.434]    [Pg.445]    [Pg.138]    [Pg.33]    [Pg.509]    [Pg.140]    [Pg.398]    [Pg.84]    [Pg.148]    [Pg.395]    [Pg.317]    [Pg.106]    [Pg.387]    [Pg.394]    [Pg.220]    [Pg.126]    [Pg.188]    [Pg.191]    [Pg.410]    [Pg.147]    [Pg.686]    [Pg.687]    [Pg.116]    [Pg.153]    [Pg.241]    [Pg.449]    [Pg.4]    [Pg.81]    [Pg.116]    [Pg.420]    [Pg.252]    [Pg.370]    [Pg.131]    [Pg.26]    [Pg.109]   
See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Resonance gas

© 2024 chempedia.info