Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance concentrations

Nuclear Magnetic Resonance. The nmr spectmm of aromatic amines shows resonance attributable to the N—H protons and the protons of any A/-alkyl substituents that are present. The N—H protons usually absorb in the 5 3.6—4.7 range. The position of the resonance peak varies with the concentration of the amine and the nature of the solvent employed. In aromatic amines, the resonance associated with N—CH protons occurs near 5 3.0, somewhat further downfield than those in the aliphatic amines. [Pg.232]

Medical Uses. A significant usage of chelation is in the reduction of metal ion concentrations to such a level that the properties may be considered to be negligible, as in the treatment of lead poisoning. However, the nuclear properties of metals may retain then full effect under these conditions, eg, in nuclear magnetic resonance or radiation imaging and in localizing radioactivity. [Pg.393]

Aqueous GPC can also be semiprepped in manner just like nonaqueous GPC. In this case one must consider carefully the buffers, salts, and biocides used in the eluant. If the fractions are destined for nuclear magnetic resonance experiments it will be imperative to either reduce the salt concentration in the eluant or remove salt after the initial fractionation. Likewise, if the collected samples are destined for infrared (IR) analysis, it is important to choose salts and buffers that have good IR transparency in the wavenumber ranges of interest. [Pg.551]

A recent nuclear magnetic resonance (NMR) study of the structure of 2,3,4,5-tetramethyl, 2,3,4- and 2,3,5-trimethyl, and 2,4-dimethyI-pyrrolium ions in concentrated HCl has shown that they are all protonated on the -carbon and are thus of type (13)... [Pg.292]

A mixture of 24 g of 1,3-dimethyladamantane and BO ml of bromine was refluxed for 6 hours. The reaction product mixture was cooled, taken up in about 200 ml of chloroform, and poured onto ice. The excess bromine was removed by adding sodium hydrosulfite. The chloroform layer was separated from the aqueous layer, dried, concentrated in vacuo, and distilled at reduced pressure to yield 30.5 g of product having a boiling point of about 11B°C at 5-6 mm np = 1.5169-1.51B2. The product was identified by nuclear magnetic resonance (NMR) and elemental analyses as 1-bromo-3,5-dimethyladamantane. [Pg.927]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

While the nuclear magnetic resonance (NMR) technique has widely been used to study diffusion processes of normal liquids, solids, or colloidal systems, there are only a few applications to molten salts. The spin echo self-diffusion method with pulsed field gradients was applied to molten salts by Herdlicka et al. "" There is no need to set up or maintain a concentration gradient. [Pg.162]

Nuclear magnetic resonance (NMR) spectroscopy is, next to X-ray diffraction, the most important method to elucidate molecular structures of small molecules up to large bio macromolecules. It is used as a routine method in every chemical laboratory and it is not the aim of this article to give a comprehensive review about NMR in structural analysis. We will concentrate here on liquid-state applications with respect to drugs or drug-like molecules to emphasize techniques for conformational analysis including recent developments in the field. [Pg.208]

M. A. d Avila, N. C. Shapley, J. H. Walton, S. R. Dungan, R. J. Phillips, R. L. Powell 2003, (Mixing of concentrated emulsions measured by nuclear magnetic resonance imaging), Phys. Fluids 15, 2499. [Pg.454]

Low Resolution Nuclear Magnetic Resonance (LR-NMR) systems are routinely used for food quality assurance in laboratory settings [25]. NMR based techniques are standardized and approved by the American Oil Chemist s Society (AOCS) (AOCSd 16b-93, AOCS AK 4-95), the International Union of Pure and Applied Chemistry (IUPAC) (solid fat content, IUPAC Norm 2.150) and the International Standards Organization (ISO) (oil seeds, ISO Dis/10565, ISO CD 10632). In addition to these standardized tests, low resolution NMR is used to measure moisture content, oil content and the state (solid or liquid) of fats in food. Table 4.7.1 summarizes common food products that are analyzed by low-resolution NMR for component concentration. [Pg.480]

Spectroscopic analyses are widely used to identify the components of copolymers. Infrared (IR) spectroscopy is often sufficient to identify the comonomers present and their general concentration. Nuclear magnetic resonance (NMR) spectrometry is a much more sensitive tool for analysis of copolymers that can be used to accurately quantify copolymer compositions and provide some information regarding monomer placement. [Pg.110]

In either dilute or concentrated solutions, additional reactions occur that result in both intra- and intermolecular cross-linking of proteins. There is little direct chemical information from such techniques as nuclear magnetic resonance spectroscopy or mass spectrometry to detail the precise nature of these cross-links.5,6... [Pg.324]

Laughlin et al. [122] analysed chloroform extracts of tributyltin dissolved in seawater using nuclear magnetic resonance spectroscopy. It was shown that an equilibrium mixture occurs which contains tributyltin chloride, tributyl tin hydroxide, the aquo complex, and a tributyltin carbonate species. Fluorometry has been used to determine triphenyltin compounds in seawater [123]. Triph-enyltin compounds in water at concentrations of 0.004-2 pmg/1 are readily extracted into toluene and can be determined by spectrofluorometric measurements of the triphenyltin-3-hydroxyflavone complex. [Pg.475]


See other pages where Nuclear magnetic resonance concentrations is mentioned: [Pg.2818]    [Pg.114]    [Pg.329]    [Pg.182]    [Pg.509]    [Pg.302]    [Pg.354]    [Pg.35]    [Pg.418]    [Pg.227]    [Pg.336]    [Pg.569]    [Pg.186]    [Pg.44]    [Pg.407]    [Pg.584]    [Pg.604]    [Pg.180]    [Pg.370]    [Pg.162]    [Pg.294]    [Pg.144]    [Pg.480]    [Pg.123]    [Pg.126]    [Pg.24]    [Pg.243]    [Pg.244]    [Pg.540]    [Pg.107]    [Pg.687]    [Pg.56]    [Pg.195]    [Pg.123]    [Pg.167]    [Pg.286]    [Pg.146]    [Pg.25]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Concentrate magnetic

Nuclear magnetic resonance acid site concentration

Nuclear magnetic resonance sample concentration

Resonator concentric

© 2024 chempedia.info