Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Norepinephrine location

Histamine in the Cardiovascular System. It has been known for many years that histamine is present in sympathetic nerves and has a distribution within the heart that parallels that of norepinephrine (see Epinephrine and norepinephrine). A physiological role for cardiac histamine as a modulator of sympathetic responses is highly plausible (15). A pool of histamine in rat heart located neither in mast cells nor in sympathetic nerves has been demonstrated. The turnover of this metaboHcaHy active pool of histamine appears to be maintained by normal sympathetic activity. [Pg.136]

Locus ceruleus Nucleus of norepinephrine-containing neurons located in the brain stem that are responsible for physiologic response to stress and panic. [Pg.1570]

The postsynaptic receptors on any given neuron receive information from transmitters released from another neuron. Typically, postsynaptic receptors are located on dendrites or cell bodies of neurons, but may also occur on axons or nerve terminals in the latter case, an axoaxonic synaptic relationship may cause increases or decreases in transmitter release. In contrast, autoreceptors are found on certain neurons and respond to transmitter molecules released from the same neuron. Autoreceptors may be widely distributed on the surface of the neuron. At the nerve terminal, they respond to transmitter molecules released into the synaptic cleft on the cell body, they may respond to transmitter molecules released by dendrites. Functionally, most autoreceptors appear to decrease further transmitter release in a kind of negative feedback loop. Autoreceptors have been identified for all the catecholamines, as well as for several other neurotransmitters. a2-adrenergic receptors are often found on noradrenergic nerve terminals of postganglionic sympathetic nerves, as well as on noradrenergic neurons in the CNS [36], and activation of these receptors decreases further norepinephrine release. Dopamine autoreceptors,... [Pg.218]

The biogenic amines are the preferred substrates of MAO. The enzyme comes in two flavors, MAO-A and MAO-B, both of which, like FMO, rely on the redox properties of FAD for their oxidative machinery. The two isoforms share a sequence homology of approximately 70% (81) and are found in the outer mitochondrial membrane, but they differ in substrate selectivity and tissue distribution. In mammalian tissues MAO-A is located primarily in the placenta, gut, and liver, while MAO-B is predominant in the brain, liver, and platelets. MAO-A is selective for serotonin and norepinephrine and is selectively inhibited by the mechanism-based inhibitor clorgyline (82). MAO-B is selective for /1-phcncthylaminc and tryptamine, and it is selectively inhibited by the mechanism-based inhibitors, deprenyl and pargyline (82) (Fig. 4.32). Recently, both MAO-A (83) and MAO-B (84) were structurally characterized by x-ray crystallography. [Pg.62]

Figure 8.1 Details of the intermolecular interactions from a minimized complex between norepinephrine and a rhodopsin-based model of the aib-AR are shown. As for the amino acid residues (D3.32, S5.42 and F6.51), only the polar hydrogen atoms are shown. Norepinephrine is colored by atom type, whereas the amino acid residues are colored according to their helix location. Figure 8.1 Details of the intermolecular interactions from a minimized complex between norepinephrine and a rhodopsin-based model of the aib-AR are shown. As for the amino acid residues (D3.32, S5.42 and F6.51), only the polar hydrogen atoms are shown. Norepinephrine is colored by atom type, whereas the amino acid residues are colored according to their helix location.
In particular, postsynaptic Oi-blockers act on the o-receptive regions located on the smooth muscle of blood vessels and counteract the pressor, vasoconstricting effect of epinephrine and norepinephrine. In addition, they exhibit a direct relaxant effect on smooth muscle, which leads to peripheral dilation of blood vessels, which in turn raises blood pressure. However, they also exhibit a cardiostimulatory effect, which is frequently a cause of tachycardia. [Pg.167]

H3-receptors have been identified in the central nervous system. They are located on presynaptic membranes and serve as inhibitory autoreceptors at histaminergic neurons. They are also found on certain human autonomic nerve endings and in atrial tissue where they may inhibit norepinephrine release during ischemia. [Pg.312]

Since the enzyme that converts dopamine to norepinephrine (dopamine (3-hydroxylase) is located only within the vesicles, the transport of dopamine into the vesicle is an essential step in the synthesis of norepinephrine. This same transport system is essential for the storage of norepinephrine. There is a tendency for norepinephrine to leak from the vesicles into the cytosol. If norepinephrine remains in the cytosol, much of it will be destroyed by a mitochondrial enzyme, monoamine oxidase MAO). However, most of the norepinephrine that leaks out of the vesicle is rapidly returned to the storage vesicles by the same transport system that carries dopamine into the storage vesicles. It is important for a proper understanding of drug action to remember that this single transport system, called vesicular transport, is an essential element of both synthesis and storage of norepinephrine. [Pg.90]

The tti-adrenoceptors are located at postjunctional (postsynaptic) sites on tissues iimervated by adrenergic neurons. a2-Adrenoceptors having a presynaptic (i.e., neuronal) location are involved in the feedback inhibition of norepinephrine release from nerve terminals (discussed later). a2-Receptors also can occur postjunc-tionally. The (3i-adrenoceptors are found chiefly in the heart and adipose tissue, while (32-adrenoceptors are located in a number of sites, including bronchial smooth muscle and skeletal muscle blood vessels, and are associated with smooth muscle relaxation. [Pg.92]

MAO A and B differ in primary structure and in substrate specificity [5,7]. The two isozymes, located on the mitochondrial outer membranes, have 70% homology in peptide sequence and share common mechanistic details. It is now recognized that these are different proteins encoded by different genes, but probably derived from a common ancestral gene. Crystal structures for both MAO A and B complexes with inhibitors have recently been reported [8]. Serotonin is selectively oxidized by MAO A, whereas benzylamine and 2-phenylethylamine are selective substrates for MAO B. Dopamine, norepinephrine, epinephrine, trypt-amine, and tyramine are oxidized by both MAO A and B in most species [9]. In addition, MAO A is more sensitive to inhibition by clorgyline (1), whereas MAO B is inhibited by low concentrations of L-deprenyl ((f )-( )-deprenyl) (2) [5,6cj. Development of inhibitors that are selective for each isozyme has been an extremely active area of medicinal chemistry [8]. [Pg.663]

Norepinephrine is released into the synapse from vesicles [(1) in Fig. 2.7] amphetamine facilitates this release. Norepinephrine acts in the CNS at two different types of noradrenergic receptors, the a and the P [see (2a), (2b) and (3) in Fig. 2.7]. a-Adrenergic receptors can be subdivided into receptors (coupled to phospholipase and located postsynaptically) and tt2 receptors (coupled to Gj and located primarily presynapti-cally) (Insel, 1996). P-Adrenergic receptors in the CNS are predominantly of the P subtype (3 in Fig. 2.7). P receptors are coupled to and lead to an increase in cAMP. Cyclic AMP triggers a variety of events mediated by protein kinases, including phosphorylation of the P receptor itself and regulation of gene expression via phosphorylation of transcription factors. [Pg.28]

Norepinephrine is made in cells located in the brain stem, mostly in a group of cells called the locus coeruleus. These neurons send widespread projections throughout the brain. This distribution has functional consequences. Small disturbances in the locus coeruleus can have a large impact on many different brain areas at the same time, and thus influence many behaviors. Disorders of emotion and mood are similar in that they simultaneously impact many different behaviors. Therefore, it is reasonable to suggest that norepinephrine might affect emotion in some ways. [Pg.80]

Norepinephrine is widely distributed throughout brain in a nonuniform pattern, discrete from that of other amine systems such as dopamine and serotonin, although overlapping in several areas. The majority of noradrenergic axons and nerve endings found in the brain originate from the locus co-eruleus, a small, well-delineated cluster of cell bodies located in the pontine brain stem, just below the floor of the fourth ventricle. Given the wide distribution of norepinephrine in the brain [widely documented in the psychiatric literature), remarkably few neurons, estimated as 12,000 neurons on each... [Pg.238]

NET, SLC6A2, the norepinephrine transporter, is a member of the SLC family, as are similar transporters responsible for the reuptake of dopamine (DAT, SLC6A3) and 5-HT (serotonin, SERT, SLC6A4) into the neurons that release these transmitters. These transport proteins are found in peripheral tissues and in the CNS wherever neurons utilizing these transmitters are located. [Pg.117]

Thus, studies of clonidine and methyldopa suggest that normal regulation of blood pressure involves central adrenergic neurons that modulate baroreceptor reflexes. Clonidine and a-methylnorepinephrine bind more tightly to a2 than to adrenoceptors. As noted in Chapter 6, a2 receptors are located on presynaptic adrenergic neurons as well as some postsynaptic sites. It is possible that clonidine and -methylnorepinephrine act in the brain to reduce norepinephrine release onto relevant receptor sites. Alternatively, these drugs may act on postsynaptic a2 adrenoceptors to inhibit activity of appropriate neurons. Finally, clonidine also binds to a nonadrenoceptor site, the imidazoline receptor, which may also mediate antihypertensive effects. [Pg.228]

Noradrenergic neuromodulatory system. The neurons that synthesize norepinephrine (molecular structure in box) are located in several brainstem nuclei including the nucleus locus coeruleus, from which axons extend caudally (to the spinal cord), locally (to the brainstem and cerebellum), and rostrally (to the thalamus, subthalamus, limbic system, and to the cerebral cortex). Compare with figure 2.1 to identify structures shown. [Pg.40]

Another type of presynaptic norepinephrine receptor on serotonin neurons is the alpha 1 receptor, located on the cell bodies (Figs. 5—45 and 5—46). When norepinephrine interacts with this receptor, it enhances serotonin release. Thus, norepinephrine can act as both an accelerator and a brake for serotonin release (Table 5-22 and Figs. 5-47 and 5-48). [Pg.176]

FIGURE 5—45. Another type of presynaptic norepinephrine receptor on serotonin neurons is the alpha 1 receptor, located on the cell bodies and dentrites. [Pg.177]

Glutamate removal. Glutamate s actions ate stopped not by enzymatic breakdown, as in other neurotransmitter systems, but by removal by two transport pumps. The first of these pumps is a presynaptic glutamate transporter, which works as do all the other neurotransmitter transporters already discussed for monoamine neurotransmitter systems such as dopamine, norepinephrine, and serotonin. The second transport pump, located on nearby glia, removes glutamate from the synapse and terminates its actions there. Glutamate removal is summarized in Figure 10—22. [Pg.387]


See other pages where Norepinephrine location is mentioned: [Pg.202]    [Pg.354]    [Pg.2]    [Pg.260]    [Pg.91]    [Pg.214]    [Pg.216]    [Pg.487]    [Pg.916]    [Pg.62]    [Pg.82]    [Pg.301]    [Pg.104]    [Pg.21]    [Pg.353]    [Pg.244]    [Pg.246]    [Pg.399]    [Pg.114]    [Pg.122]    [Pg.459]    [Pg.142]    [Pg.36]    [Pg.299]    [Pg.517]    [Pg.538]    [Pg.176]    [Pg.354]    [Pg.156]    [Pg.52]    [Pg.59]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Norepinephrine

© 2024 chempedia.info