Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Norepinephrine release, inhibition

Imamura M, Lander HM, Levi R Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine Aj-receptors and a2-adrenoceptors. Circ Res 1996 78 475. [Pg.109]

Compared to a,-receptors, a2-receptors have only moderate distribution on the effector tissues however, they have important presynaptic effects. Alpha-one receptors are found on effector tissue cells at the neuroeffector junction the a2-receptors are found on the varicosities of the postganglionic neuron. Norepinephrine released from this neuron not only binds to the a.j-receptors on the effector tissue to cause some physiological effect but also binds to the a2-receptors on the neuron. Alpha-two receptor stimulation results in presynaptic inhibition" or in a decrease in the release of norepinephrine. In this way, norepinephrine inhibits its own release from the sympathetic postganglionic neuron and controls its own activity. Both ar and a2-receptors have equal affinity for norepinephrine released directly from sympathetic neurons as well as circulating epinephrine released from the adrenal medulla. [Pg.102]

Doherty JD, Nishimura K, Kurihara N, Fujita T (1987) Promotion of norepinephrine release and inhibition of calcium uptake by pyrethroids in rat brain synaptosomes. Pestic Biochem Physiol 29 187-196... [Pg.71]

Although this drug is categorized as a local anesthetic, I have chosen to put it in with the hallucinogens because of the psychotomimetic effects that it produces. Cocaine is not a phenylethyl-amine, but it produces central nervous system arousal or stimulant effects which closely resemble those of the amphetamines, the methylenedioxyamphetamines in particular. This is due to the inhibition by cocaine of re-uptake of the norepinephrine released by the adrenergic nerve terminals, leading to an enhanced adrenergic stimulation of norepinephrine receptors. The increased... [Pg.66]

Presynaptic a2-adrenoceptors function like sensors that enable norepinephrine concentration outside the axolemma to be monitored, thus regulating its release via a local feedback mechanism. When presynaptic a2-re-ceptors are stimulated, further release of norepinephrine is inhibited. Conversely, their blockade leads to uncontrolled release of norepinephrine with an overt enhancement of sympathetic effects at Pi-adrenoceptor-mediated myocardial neuroeffector junctions, resulting in tachycardia and tachyarrhythmia. [Pg.90]

Despite a few differences, activation of -receptors generally leads to excitement, while )32-receptors generally are responsible for relaxation of tissue. Activation of P -receptors results in a stimulatory effect on the heart and kidneys, while activation of presy-naptic adrenergic receptors possibly suggests a feedback mechanism, which is the inhibition of neuronal norepinephrine release. At the same time, stimulation of postsynap-tic a2-receptors, as with aj-receptors, causes tissue excitement. [Pg.144]

Pharmacology Bretylium tosylate inhibits norepinephrine release by depressing adrenergic nerve terminal excitability, inducing a chemical sympathectomy-like state. Bretylium blocks the release of norepinephrine in response to neuron stimulation. Peripheral adrenergic blockade causes orthostatic hypotension but has less effect on supine blood pressure. It has a positive inotropic effect on the myocardium. Pharmacokinetics Peak plasma concentration and peak hypotensive effects are seen within 1 hour of IM administration. However, suppression of premature ventricular beats is not maximal until 6 to 9 hours after dosing, when mean plasma concentration declines to less than 50% of peak level. Antifibrillatory effects occur within minutes of an IV injection. Suppression of ventricular tachycardia and other ventricular arrhythmias develops more slowly, usually 20 minutes to 2 hours after parenteral administration. [Pg.463]

H3-receptors have been identified in the central nervous system. They are located on presynaptic membranes and serve as inhibitory autoreceptors at histaminergic neurons. They are also found on certain human autonomic nerve endings and in atrial tissue where they may inhibit norepinephrine release during ischemia. [Pg.312]

Its mechanism of action is not well understood. Some possible actions include inhibition of norepinephrine release and increased re-uptake of norepinephrine and serotonin. It also possibly increases the synthesis and turnover of serotonin. Lithium interferes with the production and release of the second messengers phosphatdylinositol-4,5-bisphosphate and diacyl glycerol. Finally it may uncouple receptor recognition sites from GTP-binding protein by competing with Mg++. [Pg.355]

The tti-adrenoceptors are located at postjunctional (postsynaptic) sites on tissues iimervated by adrenergic neurons. a2-Adrenoceptors having a presynaptic (i.e., neuronal) location are involved in the feedback inhibition of norepinephrine release from nerve terminals (discussed later). a2-Receptors also can occur postjunc-tionally. The (3i-adrenoceptors are found chiefly in the heart and adipose tissue, while (32-adrenoceptors are located in a number of sites, including bronchial smooth muscle and skeletal muscle blood vessels, and are associated with smooth muscle relaxation. [Pg.92]

A unique property of bretylium as an antiarrhythmic agent is its positive inotropic action. This effect, related to its actions on the sympathetic nervous system, includes an initial release of neuronal stores of norepinephrine followed shortly by a prolonged period of inhibition of direct or reflex-associated neuronal norepinephrine release. The onset of bretylium-induced hypotension is delayed 1 to 2 hours because the initial catecholamine release maintains arterial pressure before this time. [Pg.186]

Control of transmitter release is not limited to modulation by the transmitter itself. Nerve terminals also carry regulatory receptors that respond to many other substances. Such heteroreceptors may be activated by substances released from other nerve terminals that synapse with the nerve ending. For example, some vagal fibers in the myocardium synapse on sympathetic noradrenergic nerve terminals and inhibit norepinephrine release. Alternatively, the ligands for these receptors may diffuse to the receptors from the blood or from nearby tissues. Some of the transmitters and receptors identified to date are listed in Table 6-4. Presynaptic regulation by a variety of endogenous chemicals probably occurs in all nerve fibers. [Pg.123]

The direct slowing of sinoatrial rate and atrioventricular conduction that is produced by muscarinic agonists is often opposed by reflex sympathetic discharge, elicited by the decrease in blood pressure (see Figure 6-7). The resultant sympathetic-parasympathetic interaction is complex because muscarinic modulation of sympathetic influences occurs by inhibition of norepinephrine release and by postjunctional cellular effects. Muscarinic receptors that are present on postganglionic parasympathetic nerve terminals allow neurally released acetylcholine to inhibit its own secretion. The neuronal muscarinic receptors need not be the same subtype as found on effector cells. Therefore, the net effect on heart rate depends on local concentrations of the agonist in the heart and in the vessels and on the level of reflex responsiveness. [Pg.137]

In the heart, the effects on the parasympathetic limb predominate. Thus, cholinesterase inhibitors such as edrophonium, physostigmine, or neostigmine mimic the effects of vagal nerve activation on the heart. Negative chronotropic, dromotropic, and inotropic effects are produced, and cardiac output falls. The fall in cardiac output is attributable to bradycardia, decreased atrial contractility, and some reduction in ventricular contractility. The latter effect occurs as a result of prejunctional inhibition of norepinephrine release as well as inhibition of postjunctional cellular sympathetic effects. [Pg.143]

Thus, studies of clonidine and methyldopa suggest that normal regulation of blood pressure involves central adrenergic neurons that modulate baroreceptor reflexes. Clonidine and a-methylnorepinephrine bind more tightly to a2 than to adrenoceptors. As noted in Chapter 6, a2 receptors are located on presynaptic adrenergic neurons as well as some postsynaptic sites. It is possible that clonidine and -methylnorepinephrine act in the brain to reduce norepinephrine release onto relevant receptor sites. Alternatively, these drugs may act on postsynaptic a2 adrenoceptors to inhibit activity of appropriate neurons. Finally, clonidine also binds to a nonadrenoceptor site, the imidazoline receptor, which may also mediate antihypertensive effects. [Pg.228]

Receptor-dependent vasodilation may also take place in a more indirect manner through the presynaptic modulation of the release of neurotransmitters, such as norepinephrine and acetylcholine. In addition to its effects on postsynaptic receptors, norepinephrine stimulates the presynaptic a2-receptor, thereby inhibiting further transmitter release. Moreover, the activation of other presynaptic receptors such as the muscarinic cholinergic, dopaminergic, purinergic, serotoninergic, and histaminergic receptors leads to diminished norepinephrine release and subsequent vasodilation. [Pg.364]

Inhibition of norepinephrine release is probably caused by guanethidine s local anesthetic properties on sympathetic nerve terminals. Although the drug does not impair axonal conduction in sympathetic fibers, local blockade of membrane electrical activity may occur in nerve endings because the nerve endings specifically take up and concentrate the drug. [Pg.238]


See other pages where Norepinephrine release, inhibition is mentioned: [Pg.218]    [Pg.202]    [Pg.129]    [Pg.188]    [Pg.62]    [Pg.279]    [Pg.82]    [Pg.219]    [Pg.123]    [Pg.319]    [Pg.246]    [Pg.171]    [Pg.139]    [Pg.406]    [Pg.299]    [Pg.276]    [Pg.284]    [Pg.284]    [Pg.284]    [Pg.142]    [Pg.203]    [Pg.234]    [Pg.444]    [Pg.233]    [Pg.329]    [Pg.330]    [Pg.101]   
See also in sourсe #XX -- [ Pg.101 , Pg.111 ]




SEARCH



Norepinephrine

Norepinephrine release

© 2024 chempedia.info