Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals reactions with nonmetals

Phosphoms shows a range of oxidation states from —3 to +5 by virtue of its electronic configuration. Elemental P is oxidized easily by nonmetals such as oxygen, sulfur, and halides to form compounds such as 2 5 2 5 reduced upon reaction with metals to generate phosphides. The... [Pg.348]

The relatively few nonmetals appear in the upper right-hand corner of the table (to the right of the heavy line in Fig. 2.21), except hydrogen, a non-metal that is grouped with the metals. The nonmetals typically lack the physical properties that characterize the metals. Chemically, they tend to gain electrons to form anions in reactions with metals. Nonmetals often bond to each other by forming covalent bonds. For example, chlorine is a typical... [Pg.32]

Ignition or explosive reaction with metals (e.g., aluminum, antimony powder, bismuth powder, brass, calcium powder, copper, germanium, iron, manganese, potassium, tin, vanadium powder). Reaction with some metals requires moist CI2 or heat. Ignites with diethyl zinc (on contact), polyisobutylene (at 130°), metal acetylides, metal carbides, metal hydrides (e.g., potassium hydride, sodium hydride, copper hydride), metal phosphides (e.g., copper(II) phosphide), methane + oxygen, hydrazine, hydroxylamine, calcium nitride, nonmetals (e.g., boron, active carbon, silicon, phosphoms), nonmetal hydrides (e.g., arsine, phosphine, silane), steel (above 200° or as low as 50° when impurities are present), sulfides (e.g., arsenic disulfide, boron trisulfide, mercuric sulfide), trialkyl boranes. [Pg.315]

Ions that carry a negative charge are collectively called anions. Nonmetals tend to gain electrons in reactions with metals to form anions. Remember, whether electrons are lost or gained by an atom, the name of the resulting ion is still associated with the name of the element from which it came. Again, only the electrons are involved, not the nucleus. [Pg.75]

Although many compounds are molecular (as presented in Chapter 2), a very large number are best described as ionic, those composed of ions. In this chapter, the focus is on the formulas and names of ionic compounds. Nearly all ionic compounds are composed of both metals and nonmetals. Remember that metals have a great tendency to lose electrons in chemical reactions to form positive ions (cations), while nonmetals, in their reaction with metals, have a great tendency to gain electrons to form negative ions (anions). These ions of opposite charge combine to form ionic compounds. [Pg.85]

Nonmetals lack metallic luster and are generally poor conductors of heat and electricity. Several are gases at room temperature. Compounds composed entirely of nonmetals are generally molecular. Nonmetals usually form anions in their reactions with metals. Nonmetal oxides are acidic they react with bases to form salts and water. Metalloids have properties that are intermediate between those of metals and nonmetals. [Pg.278]

The halogens (group 7A) are nonmetals that exist as diatomic molecules. The halogens have the most negative electron affinities of the elements. Thus, their chemistry is dominated by a tendency to form 1— ions, especially in reactions with metals. [Pg.278]

Elements of Group 7A, the halogens, all undergo similar reactions with metals or other nonmetals. [Pg.325]

Commercial Sr and Ba are quite impure, typical assays being 98.5 and 98.0%, respectively, with the major impurities being the other alkaline-earth metals (with the exception of Be) and the nonmetals H, C, N and O. The former are obtained from the ores and the latter from reaction with the constituents of the atmosphere. [Pg.382]

In substitution reactions with acids, metals that can form two different ions in their compounds generally form the one with the lower charge. For example, iron can form Fe2+ and Fe3+. In its reaction with HCI, FeCI2 is formed. In contrast, in combination with the free element, the higher-charged ion is often formed if sufficient nonmetal is available. [Pg.120]

Reacts with many metals to give hydrogen, sometimes violently. With non-metals pyrophoric hydrides may result. Frequently initiates explosive reactions between other substances. Violent reactions with many non-metal and some metal halides and oxyhalides, also with many organometallic compounds. Many metal nonmetal-lides produce toxic, flammable or pyrophoric gases on contact with diprotium monoxide. [Pg.1623]

H2, hydrogen, is a colorless, odorless, tasteless, nonpolar, diamagnetic, diatomic gas with the lowest atomic weight and density of any known substance. It has low solubility in water and is very flammable. Hydrogen is prepared by reactions of metals with water, steam or various acids, electrolysis of water, the water gas reaction and thermal cracking of hydrocarbons. It combines with metals and nonmetals to form hydrides. [Pg.85]

Metals react with nonmetals. These reactions are oxidation-reduction reactions. (See Chapters 4 and 18). Oxidation of the metal occurs in conjunction with reduction of the nonmetal. In most cases, only simple compounds will form. For example, oxygen, 02, reacts with nearly all metals to form oxides (compounds containing O2-). Exceptions are the reaction with sodium where sodium peroxide, Na202, forms and the reaction with potassium, rubidium, and cesium where the superoxides, K02, Rb02, and Cs02 form. [Pg.283]

Chemically, nonmetals are usually the opposite of metals. The nonmetallic nature will increase towards the top of any column and toward the right in any row on the periodic table. Most nonmetal oxides are acid anhydrides. When added to water, they will form acids. A few nonmetals oxides, most notably CO and NO, do not react. Nonmetal oxides that do not react are neutral oxides. The reaction of a nonmetal oxide with water is not an oxidation-reduction reaction. The acid that forms will have the nonmetal in the same oxidation state as in the reacting oxide. The main exception to this is N02, which undergoes an oxidation-reduction (disproportionation) reaction to produce HN03 and NO. When a nonmetal can form more than one oxide, the higher the oxidation number of the nonmetal, the stronger the acid it forms. [Pg.286]

The periodic table can give us many clues as to the type of reaction that is taking place. One general rule, covered in more detail in the Bonding chapter, is that nonmetals react with other nonmetals to form covalent compounds, and that metals react with nonmetals to... [Pg.68]

Bipyridyl (continued) as ligand, 12 135-1% catalysis, 12 157-159 electron-transfer reactions, 12 153-157 formation, dissociation, and racemization of complexes, 12 149-152 kinetic studies, 12 149-159 metal complexes with, in normal oxidation states, 12 175-189 nonmetal complexes with, 12 173-175 oxidation-reduction potentials, 12 144-147... [Pg.24]

This is not the case in the reaction of the metal film with gas in this case, the concentration of the nonmetal increases with the temperature. [Pg.157]


See other pages where Metals reactions with nonmetals is mentioned: [Pg.417]    [Pg.848]    [Pg.25]    [Pg.1060]    [Pg.56]    [Pg.35]    [Pg.2842]    [Pg.55]    [Pg.689]    [Pg.699]    [Pg.698]    [Pg.456]    [Pg.326]    [Pg.38]    [Pg.65]    [Pg.533]    [Pg.779]    [Pg.233]    [Pg.189]    [Pg.861]    [Pg.147]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Metal with nonmetals

Nonmetals

Nonmetals reactions

Reaction of Metal and Nonmetal Oxides with Water

Reactions of Metals with Nonmetals (Oxidation-Reduction)

Reactions with nonmetals

© 2024 chempedia.info