Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, reaction with

Graphite reacts with meteils that form carbides readily such as the metal of groups IV, V and Vl.h liasi jhese carbides are the so-called hard [Pg.66]

Graphite reacts with iron to form iron carbide, FesC, usually by the direct solution of carbon in the molten iron. Iron carbide may also be formed from the reaction of iron with a carbon-containing gas. This reaction is known as case-hardening. [Pg.67]

The reaction rate of graphite with the precious metals, aluminum, and the lll-V and ll-VI semiconductor compounds is low and graphite is used successfully as a crucible to melt these materials. [Pg.67]

Graphite reacts readily with the alkali metals potassium, calcium, strontium, and barium. The atoms of some of these metals, notably potassium, can readily penetrate between the basal planes of the graphite crystal to form intercalated (or lamellar compounds) with useful properties. These compounds are reviewed in Ch. 10, Sec. 3.0. [Pg.67]


Small amounts of specially functionalized monomers are often copolymerized with acryUc monomers in order to modify or improve the properties of the polymer. These functional monomers can bring about improvements either directiy or by providing sites for further reaction with metal ions, cross-linkers, or other compounds and resins. Table 9 Hsts some of the more common functional monomers used in the preparation of acryUc copolymers. [Pg.166]

Reactions With Metals. AH metals react to some extent with the halogen fluorides, although several react only superficiaHy to form an adherent fluoride film of low permeabHity that serves as protection against further reaction. This protective capacity is lost at elevated temperatures, however. Hence, each metal has a temperature above which it continues to react. Mild steel reacts rapidly above 250°C. Copper and nickel lose the abHity to resist reaction above 400 and 750°C, respectively. [Pg.185]

Reactions with Metals. Many common metals react with OF2, but the reaction stops after a passive metal fluoride coating is formed (3,4). [Pg.220]

Reaction with Metals. Thermodynamic considerations for the reaction... [Pg.444]

Oxides and hydroxides react with HCl to form a salt and water as in a simple acid—base reaction. However, reactions with low solubiHty or insoluble oxides and hydroxides is complex and the rate is dependent on many factors similar to those for reactions with metals. Oxidizing agents such as H2O2, H2SeO, and V2O3 react with aqueous hydrochloric acid, forming water and chlorine. [Pg.444]

Acidic Properties. As a typical acid, it reacts readily with alkaUes, basic oxides, and carbonates to form salts. The largest iadustrial appHcation of nitric acid is the reaction with ammonia to produce ammonium nitrate. However, because of its oxidising nature, nitric acid does not always behave as a typical acid. Bases having metallic radicals ia a reduced state (eg, ferrous and staimous hydroxide becoming ferric and stannic salts) are oxidized by nitric acid. Except for magnesium and manganese ia very dilute acid, nitric acid does not Hberate hydrogen upon reaction with metals. [Pg.39]

Phosphoms shows a range of oxidation states from —3 to +5 by virtue of its electronic configuration. Elemental P is oxidized easily by nonmetals such as oxygen, sulfur, and halides to form compounds such as 2 5 2 5 reduced upon reaction with metals to generate phosphides. The... [Pg.348]

Meta.1 Oxides. Halogen-containing elastomers such as polychloropreae and chlorosulfonated polyethylene are cross-linked by their reaction with metal oxides, typically ziac oxide. The metal oxide reacts with halogen groups ia the polymer to produce an active iatermediate which then reacts further to produce carbon—carbon cross-links. Ziac chloride is Hberated as a by-product and it serves as an autocatalyst for this reaction. Magnesium oxide is typically used with ZnCl to control the cure rate and minimize premature cross-linking (scorch). [Pg.236]

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

A base is any material that produces hydroxide ions when it is dissolved in water. The words alkaline, basic, and caustic are often used synonymously. Common bases include sodium hydroxide (lye), potassium hydroxide (potash lye), and calcium hydroxide (slaked lime). The concepts of strong versus weak bases, and concentrated versus dilute bases are exactly analogous to those for acids. Strong bases such as sodium hydroxide dissociate completely while weak bases such as the amines dissociate only partially. As with acids, bases can be either inorganic or organic. Typical reactions of bases include neutralization of acids, reaction with metals, and reaction with salts ... [Pg.165]

In view of the facile oxidation of 10.13a-c it is not surprising that some metathetical reactions with metal halides result in redox behaviour. Interestingly, lithium halides disrupt the dimeric structures of 10.13a or 10.13c to give distorted cubes of the type 10.14, in which a molecule of the lithium halide is entrapped by a Ei2[E(N Bu)3] monomer. Similar structures are found for the MeEi, EiN3 and EiOCH=CH2 adducts of 10.13a. In the EiN3 adduct, the terminal... [Pg.195]

Although redox processes are sometimes observed in metathetical reactions with metal halides, the pyramidal dianion [Te(NtBu)3] has a rich coordination chemistry (Scheme 10.8). For example, the reaction... [Pg.196]

C-C bonds can be formed by reaction with alkyl iodides or more usefully by reaction with metal carbonyls to give aldehydes and ketones e.g. Ni(CO)4 reacts with LiR to form an unstable acyl nickel carbonyl complex which can be attacked by electrophiles such as H+ or R Br to give aldehydes or ketones by solvent-induced reductive elimination ... [Pg.105]


See other pages where Metals, reaction with is mentioned: [Pg.8]    [Pg.400]    [Pg.532]    [Pg.348]    [Pg.1]    [Pg.263]    [Pg.131]    [Pg.717]    [Pg.887]    [Pg.381]    [Pg.467]    [Pg.704]    [Pg.805]    [Pg.294]   
See also in sourсe #XX -- [ Pg.793 ]

See also in sourсe #XX -- [ Pg.711 ]

See also in sourсe #XX -- [ Pg.218 ]




SEARCH



© 2024 chempedia.info