Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen catalytic reduction

TABLE 25-25 Advantages and Disadvantages of Selective Catalytic Reduction of Nitrogen Oxides... [Pg.2181]

Selective Catalytic Reduction of Nitrogen Oxides The traditional approach to reducing ambient ozone concentrations has been to reduce VOC emissions, an ozone precurssor. In many areas, it has now been recognized that ehmination of persistent exceedances of the National Ambient Air Qnality Standard for ozone may reqnire more attention to reductions in the other ingredients in ozone formation, nitrogen oxides (NOJ. In such areas, ozone concentrations are controlled by NO rather than VOC emissions. [Pg.2195]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

Selective catalytic reduction (SCR) is cmrently the most developed and widely applied FGT technology. In the SCR process, ammonia is used as a reducing agent to convert NO, to nitrogen in the presence of a catalyst in a converter upstream of the air heater. The catalyst is usually a mixture of titanium dioxide, vanadium pentoxide, and hmgsten trioxide. SCR can remove 60-90% of NO, from flue gases. Unfortunately, the process is very expensive (US 40- 80/kilowatt), and the associated ammonia injection results in an ammonia slip stream in the exhaust. In addition, there are safety and environmental concerns associated with anhydrous ammonia storage. [Pg.28]

Nitric Acid Plant - Nitrogen oxide levels should be controlled to a maximum of 1.6 kg/t of 100% nitric acid. Extended absorption and technologies such as nonselective catalytic reduction (NSCR) and selective catalytic reduction (SCR) are used to eontrol nitrogen oxides in tail gases. [Pg.66]

Selective Catalytic Reduction (SCR) SCE is a process to reduce NO, to nitrogen and water with ammonia in the presence of a catalyst between 540-840 F (282-449 C). Ammonia is usually injected at a 1 1 molar ratio with the NOx contaminants. Ammonia is used due to its tendency to react only with the contaminants and not with the oxygen in the gas stream. Ammonia is injected by means of compressed gas or steam carriers. Efficiencies near 90% have been reported with SCR. See Exxon Thermal DeNO. ... [Pg.546]

Cyclization of the side chain onto the nitrogen atom leads to compounds with sedative and tranquilizing activity. The lack of structural specificity, that is, the fact that both positional isomers (41,43) show the same activity, is notable. Thus, condensation of the Grignard reagent from 2-bromopyridine with ben-zophenone affords the tertiary carbinol, 40. Catalytic reduction... [Pg.46]

Addition of a hydroxyl group to the aromatic ring of ephedrine as well as changing the substitution on nitrogen leads to a compound whose main activity is to raise blood pressure. Thus, lormation of the Shiff base of the m-hydroxy analog of 30 with bcnzylamine (34), followed by catalytic reduction, yields metar- uiiinol (35). When optically active hydroxyketone is employed in... [Pg.67]

Thus, condensation of isoniazide with acetone at the basic nitrogen gives the corresponding Shiff base (8). Catalytic reduction affords the antidepressant, iproniazid (9). Addition of the same basic nitrogen to methyl acrylate by Michael condensation leads to the 3-amino ester (10). This is converted to the amide, nialamide (11), on heating with benzylamine. [Pg.254]

Postcombustion processes are designed to capture NO, after it has been produced. In a selective catalytic reduction (SCR) system, ammonia is mixed with flue gas in the presence of a catalyst to transform the NO, into molecular nitrogen and water. In a selective noncatalytic reduction (SNCR) system, a reducing agent, such as ammonia or urea, is injected into the furnace above the combustion zone where it reacts with the NO, to form nitrogen gas and water vapor. Existing postcombustion processes are costly and each has drawbacks. SCR relies on expensive catalysts and experiences problems with ammonia adsorption on the fly ash. SNCR systems have not been proven for boilers larger than 300 MW. [Pg.447]

Reactions involving the catalytic reduction of nitrogen oxides are of major environmental importance for the removal of toxic emissions from both stationary and automotive sources. As shown in this section electrochemical promotion can affect dramatically the performance of Rh, Pd and Pt catalysts (commonly used as exhaust catalysts) interfaced with YSZ, an O2 ion conductor. The main feature is strong electrophilic behaviour, i.e. enhanced rate and N2 selectivity behaviour with decreasing Uwr and , due to enhanced NO dissociation. [Pg.411]

Emission control from heavy duty diesel engines in vehicles and stationary sources involves the use of ammonium to selectively reduce N O, from the exhaust gas. This NO removal system is called selective catalytic reduction by ammonium (NH3-SGR) and it is additionally used for the catalytic oxidation of GO and HGs.The ammonia primarily reacts in the SGR catalytic converter with NO2 to form nitrogen and water. Excess ammonia is converted to nitrogen and water on reaction with residual oxygen. As ammonia is a toxic substance, the actual reducing agent used in motor vehicle applications is urea. Urea is manufactured commercially and is both ground water compatible and chemically stable under ambient conditions [46]. [Pg.151]

It has been reported that titanium supported vanadium catalyst is active for ammonia oxidation at temperatures above 523 K [2,3]. Also, supported vanadium oxides are known to be efficient catalyst for the catalytic reduction of nitrogen oxides (NO ) in the presence of ammonia [4]. This work investigates the nanostructured vanadia/Ti02 for low temperature catalytic remediation of ammonia in air. [Pg.289]

Wet air pollution control (WAPC) devices are used to treat exhaust gases from stainless steel pickling operations, thereby generating wastewater, which are treated using the selective catalytic reduction (SCR) technology in which anhydrous ammonia is injected into the gas stream prior to a catalyst to reduce NO, to nitrogen and water. The most common types of catalysts are a metal oxide, a noble metal, or zeolite. [Pg.68]

Inclusion of basic nitrogen in the p-position is also compatible with antiinflammatory activity in this series. Nitration of phenylacetic acid (27) affords 28. Methyl iodide alkylation of the enolate prepared from 28 using two equivalents of sodium hydride gives 29. This appears to involve an Ivanov intermediate (28a). Catalytic reduction of the... [Pg.68]

These harmful effects of nitrogen oxides being known from several years, regulations in their emissions have been progressively introduced in most of the countries worldwide. Therefore, new technologies have been introduced to either limit their formation or convert them to N2. Among these technologies, the selective catalytic reduction (SCR) was the one which was most successfully developed. [Pg.2]

Less, but still significant, information is available on the surface chemistry of other nitrogen oxides. In terms of N20, that molecule has been shown to be quite reactive on most metals on Rh(110), for instance, it decomposes between 60 and 190 K, and results in N2 desorption [18]. N02 is also fairly reactive, but tends to convert into a mixed layer of adsorbed NO and atomic oxygen [19] on Pd(lll), this happens at 180 K, and is partially inhibited at high coverages. Ultimately, though the chemistry of the catalytic reduction of nitrogen oxide emissions is in most cases controlled by the conversion of NO. [Pg.71]

This review has highlighted the key contributions of modern surface science to the understanding of the kinetics and mechanism of nitrogen oxide reduction catalysis. As discussed above, the conversion of NO has been taken as the standard to represent other NOx, and CO has typically been used as the reducing agent in these studies. The bulk of the work has been carried out on rhodium and palladium surfaces, the most common transition metals used in three-way catalytic converters. [Pg.90]

Armor, J.N. (1995) Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen A review, Catal. Today, 26, 147. [Pg.142]

Matsumoto, S. (2000) Catalytic Reduction of Nitrogen Oxides in Automotive Exhaust Containing Excess Oxygen by NOx Storage-Reduction Catalyst, Cat. Tech., 4, 102. [Pg.206]

The simplest variant of the selective catalytic reduction of NO with NH3 is the standard-SCR reaction, in which NH3 and NO comproportionate in a 1 1 stoichiometry to nitrogen. This reaction is efficiently catalyzed with high activity and selectivity between 300 and 400°C by V205/W03-Ti02 catalysts, which are wide-spread in stationary SCR systems [1],... [Pg.267]


See other pages where Nitrogen catalytic reduction is mentioned: [Pg.458]    [Pg.458]    [Pg.391]    [Pg.429]    [Pg.43]    [Pg.122]    [Pg.530]    [Pg.512]    [Pg.2152]    [Pg.393]    [Pg.26]    [Pg.77]    [Pg.387]    [Pg.104]    [Pg.1046]    [Pg.95]    [Pg.445]    [Pg.87]    [Pg.48]    [Pg.479]    [Pg.139]    [Pg.141]    [Pg.2]    [Pg.10]    [Pg.90]    [Pg.91]    [Pg.261]    [Pg.268]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Catalytic reduction

Catalytic reduction of nitrogen oxides

Nitrogen oxides, catalytic reduction

Reductive catalytic

© 2024 chempedia.info