Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroalkanes cycloadditions

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

For example, the reaction of nitroalkanes with di-tert-butyl dicarbonate, (B0C)20, and 4-dimethylaminopyridine (DMAP) as catalysts in the presence of dipolarophiles at room temperature affords cycloadducts in improved yields compared with the Mukaiyama-Hosino method.58 The conversion of Eq. 6.32 gives a 90% yield by this procedure, whereas the conventional method using PhNCO gives a 79% yield of the same product. An additional advantage of this new method is that the use of (B0C)20 allows the reaction to be carried out with substrates that contain NH or OH groups without prior protection. The cycloaddition leads directly to protected N- or (9-Boc products (see Eq. 6.33). [Pg.168]

A series of 3-substituted-2-isoxazoles are prepared by the following simple procedure in situ conversion of nitroalkane to the silyl nitronate is followed by 1,3-dipolar cycloaddition to produce the adduct, which undergoes thermal elimination during distillation to furnish the isoxazole (Eq. 8.74). 5 Isoxazoles are useful synthetic intermediates (discussed in the chapter on nitrile oxides Section 8.2.2). Furthermore, the nucleophilic addition to the C=N bond leads to new heterocyclic systems. For example, the addition of diallyl zinc to 5-aryl-4,5-dihydroi-soxazole occurs with high diastereoselectivity (Eq. 8.75).126 Numerous synthetic applications of 1,3-dipolar cycloaddition of nitronates are summarized in work by Torssell and coworker.63a... [Pg.267]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

The cycloaddition, reduction and oxidation reactions emanating from a,/J-unsatu-rated nitroalkenes provide easy access to a vast array of functionalities that include nitroalkanes, N-substituted hydroxylamines, amines, ketones, oximes, and a-substi-tuted oximes and ketones [73-75], Consequently, there are numerous possibilities of using these in situ generated nitroalkenes for the preparation of valuable building blocks and synthetic precursors. [Pg.193]

The Mukaiyama-Hoshino reaction between a nitroalkane and phenyl isocyanate generates a nitrile oxide, and this method has been used in the synthesis of 1,2,4-oxadiazoles as discussed in CHEC-II(1996) <1996CHEC-II(4)179>. In a more recent advance, nitroethane undergoes ultrasound-mediated cycloaddition with trichloroacetonitrile to give the extremely useful (see Equation 11) 5-trichloromethyl-l,2,4-oxadiazole 228 (Equation 45) <1995TL4471>. [Pg.280]

Dehydration of primary nitroalkanes results in unstable nitrile oxides and, therefore, is limited by in situ transformation of the latter, for the preparation of various stable products, mainly those of 1,3-dipolar cycloaddition (Scheme 1.4). [Pg.6]

The conjugate addition of nitroalkanes to a,P-unsaturated aldehydes (Sect. 2.2.2) has been investigated by Uggerud, who compared the uncatalysed, proton catalysed and iminium ion catalysed additions [232]. The results suggested that protonated acrolein was more activated towards addition than the iminium ion catalysed process and also indicated that an intermediate oxazolidin structure 183, unobserved experimentally, may be involved in the reaction pathway (Fig. 17) with the transition state resembling that of a [3+2] cycloaddition process. [Pg.338]

Nitrile oxides, which are formed by dehydration of nitroalkanes or by oxidation of oximes with hypochlorite,87 88 are also useful 1,3-dipoles. They are highly reactive and must be generated in situ.ss They react with both alkenes and alkynes. Entry 5 in Scheme 6.5 is an example in which the cycloaddition product (an isoxazole) was eventually converted to a prostaglandin derivative. [Pg.365]

Isoxazoline derivatives of Cgo such as 250 (Scheme 4.40) are accessible by 1,3-dipolar cycloadditions of nitrile oxides to [6,6] double bonds of the fullerene [2, 278, 291-305]. The nitrile oxides 249 with R = methyl, ethyl, ethoxycarbonyl and anthryl are generated in situ from the corresponding nitroalkane, phenyl isocyanate and triethylamine. The isoxazoline derivative of Cgo 250 (with R = anthryl) crystallizes in black prisms out of a solvent mixture of CS2 and acetone (3 2) [292]. X-ray crystal structure analysis shows that addition of the nitrile oxide occurs on a [6,6] double bond of the fullerene framework. [Pg.151]

Cycloaddition of Nitroalkanes/Nitroalkenes to Unsaturated Compounds. 9.2 Inter- and Intramolecular Cyclization of Oximes... [Pg.333]

Examples of optically active aldehydes or nitroalkanes that have been used for the generation of nitrile oxides (mostly via hydroximoyl chlorides) and subsequent cycloadditions to olefins are collected in Table 6.9. [Pg.400]

Some other aspects of nitrile oxide chemistry that will grow in importance in the future involve the use of high pressure (> 10 kbar) to enforce hitherto slow or not feasible cycloadditions. Of particular relevance for nitrile oxides will be to find substantial improvements for practical, cost-efficient, large-scale reactions (351). Solid-phase techniques, adaptation for combinatorial chemistry, or improved versions for dehydrating nitroalkanes will all play an increasingly important role. [Pg.462]

Nitronates have also been applied in intramolecular 1,3-dipolar cycloaddition reactions. Denmark and Thorarensen (64) extensively studied the application of cyclic alkyl nitronates in tandem[4+2]/[3+2] cycloadditions of nitroalkanes. In most cases, the stereoselectivity of these reactions is directed by a chiral auxiliary and will thus be outlined in Section 12.3.4. The reader is also directed to the excellent chapter by Denmark in Chapter 2. [Pg.848]

Cyclic alkyl nitronates may be used in tandem [4+2]/[3+2] cycloadditions of nitroalkanes, and this reaction has been extensively studied by Denmark et al. (64,333-335). In recent work, they developed the silicon-tethered heterodiene-alkene 219 (Scheme 12.63). Steric hindrance and the fact that both the nitroalkene and the a,p-unsaturated ester in 219 are electron deficient renders the possibility of self-condensation. Instead, 219 reacts with the electron-rich chiral vinyl ether 220 in the presence of the catalyst 224 to form the intermediate chiral nitronate 221. The tandem reaction proceeds from 221 with an intramolecular 1,3-dipolar cycloaddition to form 222 with 93% de. Further synthetic steps led to the formation of ( )-detoxinine 223 (333). A similar type of tandem reaction has also been applied by Chattopadhyaya and co-workers (336), using 2, 3 -dideoxy-3 -nitro-2, 3 -didehydrothymidine as the starting material (336). [Pg.863]

Aliphatic nitro compounds are versatile building blocks and intermediates in organic synthesis,14 15 cf. the overview given in the Organic Syntheses preparation of nitroacetaldehyde diethyl acetal.16 For example, Henry and Michael additions, respectively, lead to 1,2- and 1,4-difunctionalized derivatives.14 18 1,3-Difunctional compounds, such as amino alcohols or aldols are accessible from primary nitroalkanes by dehydration/1,3-dipolar nitrile oxide cycloaddition with olefins (Mukaiyama reaction),19 followed by ring cleavage of intermediate isoxazolines by reduction or reduction/hydrolysis.20 21... [Pg.243]

Isoxazoles and their partially or fully saturated analogs have mainly been prepared, both in solution and on insoluble supports, by 1,3-dipolar cycloadditions of nitrile oxides or nitrones to alkenes or alkynes (Figure 15.10). Nitrile oxides can be generated in situ on insoluble supports by dehydration of nitroalkanes with isocyanates, or by conversion of aldehyde-derived oximes into a-chlorooximes and dehydrohalogenation of the latter. Nitrile oxides react smoothly with a wide variety of alkenes and alkynes to yield the corresponding isoxazoles. A less convergent approach to isoxazoles is the cyclocondensation of hydroxylamine with 1,3-dicarbonyl compounds or a,[3-unsatu-rated ketones. [Pg.417]

Kuster, GJ. and Scheeren, H.W., The preparation of resin-bound nitroalkanes and some applications in high pressure promoted cycloadditions, Tetrahedron Lett., 2000,41, 515-519. [Pg.220]

Michael-aldol reaction as an alternative to the Morita-Baylis-Hillman reaction 14 recent results in conjugate addition of nitroalkanes to electron-poor alkenes 15 asymmetric cyclopropanation of chiral (l-phosphoryl)vinyl sulfoxides 16 synthetic methodology using tertiary phosphines as nucleophilic catalysts in combination with allenoates or 2-alkynoates 17 recent advances in the transition metal-catalysed asymmetric hydrosilylation of ketones, imines, and electrophilic C=C bonds 18 Michael additions catalysed by transition metals and lanthanide species 19 recent progress in asymmetric organocatalysis, including the aldol reaction, Mannich reaction, Michael addition, cycloadditions, allylation, epoxidation, and phase-transfer catalysis 20 and nucleophilic phosphine organocatalysis.21... [Pg.288]

Dipolar cycloaddition of nitrile oxides to olefins and acetylenes is among the most widely exploited synthetic routes towards isoxazoles and isoxazolines. It is well-known that microwave irradiation in cycloaddition reactions considerably reduces reaction times. Indeed, the use of dielectric heating (microwave-heated reactions were performed in a flask with a reflux condenser mounted outside the apparatus) allowed for a remarkable reduction of the cycloaddition reaction time from 6-12 hours to merely 3 minutes [69]. Simple aqueous workup provided the target isoxazoles and isoxazolines. The requisite nitrile oxides for the cycloaddition reaction were generated in situ from the corresponding nitroalkanes, 4-(4,6-dimethoxy [1,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 4-dimethylaminopyridine (DMAP) (Scheme 22). [Pg.69]

Transformations of the nitro function in 142 to a carbonyl group employing variants of the Nef reaction or its reduction to a cyclic nitrone 143, which is capable to undergo 1,3-dipolar cycloadditions, underscore the high synthetic potential of these nitroalkane adducts (Eq. 62)84). [Pg.106]

The alternative approach to isoxazoles relies on cycloadditions of nitrile oxides with alkynes. We saw in Chapter 35 that there are two good routes to these reactive compounds, the y-elimination of chlorooximes or the dehydration of nitroalkanes. [Pg.1201]

The syntheses of 4,5-dihydro-4-isoxazolole 2-oxide from activated primary nitroalkanes were reviewed <07T12099>. Theoretical studies of the cycloaddition of nitrile oxides and nitrones with dipolarophiles under various reaction conditions were published <07OL555 07JOC4475 07T5251>. [Pg.270]

Caldarelli et al. (240) have recently reported a five-step synthesis of substituted p)Trole libraries L22 and L23 using solid-supported reagents and scavengers. The synthesis involved oxidation of benzyl alcohols Mi to aldehydes (step a, Fig. 8.46), Henry reaction of aldehydes 8.91 with nitroalkanes M2 (step b), and acylation and elimination of nitroalcohols 8.93 (steps c and d) to give the nitrostyrenes 8.94, which were subjected to 1,3-dipolar cycloaddition with an isocyanoacetate (step e) to give the pyrroles 8.95. N-alkylation of these pyrroles with alkyl halides (step f) and final library-from-a-library hydrolysis/decarboxylation of L22 gave a library of trisub-stituted pyrroles L23 (step g. Fig. 8.46). [Pg.395]


See other pages where Nitroalkanes cycloadditions is mentioned: [Pg.532]    [Pg.167]    [Pg.306]    [Pg.6]    [Pg.426]    [Pg.152]    [Pg.353]    [Pg.134]    [Pg.362]    [Pg.461]    [Pg.116]    [Pg.100]    [Pg.143]    [Pg.286]    [Pg.385]    [Pg.389]    [Pg.180]    [Pg.430]   
See also in sourсe #XX -- [ Pg.446 ]




SEARCH



4-nitroalkanal nitroalkane

Alkenes nitroalkanes, cycloaddition

Nitroalkane

Nitroalkanes

© 2024 chempedia.info