Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro catalysts

An interesting application of tiie nitro-catalyst 6 has been recently published by Boehringer IngeUieim Ltd. in synthesis of BILN 2061 (Ciluprevir), the first reported hepatitis C virus (HCV) NS3 protease inhibitor to have shown... [Pg.118]

Nitro groups are efficiently reduced with hydrogen over Raney nickel catalyst (I. Fel-ner, 1967), with hydrides, or with metals. [Pg.112]

The 4-hydroxy-1-alkene (homoallylic alcohol) 81 is oxidized to the hetni-acetal 82 of the aldehyde by the participation of the OH group when there is a substituent at C3. In the absence of the substituent, a ketone is obtained. The hemiacetal is converted into butyrolactone 83[117], When Pd nitro complex is used as a catalyst in /-BuOH under oxygen, acetals are obtained from homoallylic alcohols even in the absence of a substituent at C-3[l 18], /-Allylamine is oxidized to the acetal 84 of the aldehyde selectively by participation of the amino group[l 19],... [Pg.33]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Formic acid is a good reducing agent in the presence of Pd on carbon as a catalyst. Aromatic nitro compounds are reduced to aniline with formic acid[100]. Selective reduction of one nitro group in 2,4-dinitrotoluene (112) with triethylammonium formate is possible[101]. o-Nitroacetophenone (113) is first reduced to o-aminoacetophenone, then to o-ethylaniline when an excess of formate is used[102]. Ammonium and potassium formate are also used for the reduction of aliphatic and aromatic nitro compounds. Pd on carbon is a good catalyst[103,104]. NaBH4 is also used for the Pd-catalyzed reduction of nitro compounds 105]. However, the ,/)-unsaturated nitroalkene 114 is partially reduced to the oxime 115 with ammonium formate[106]... [Pg.541]

A solution of trifluoroacetic acid in toluene was found to be advantageous for cydization of pyruvate hydrazoncs having nitro substituents[4]. p-Toluene-sulfonic acid or Amberlyst-15 in toluene has also been found to give excellent results in preparation of indole-2-carboxylale esters from pyruvate hydra-zoiies[5,6J. Acidic zeolite catalysts have been used with xylene as a solvent to convert phenylhydraziiies and ketones to indoles both in one-flask procedures and in a flow-through reactor[7]. [Pg.59]

Ethyl 2-nitro-3-(5-benzyloxyindoT3-yl)propanoate (3.7 g, 0.01 mol) was dissolved in abs. ethanol (50 ml) and hydrogenated over PtO catalyst (EOg) until H2 uptake ceased (about 1.75 h). The solution was purged with nitrogen and 20% aq. NaOH solution (4.0 g) w as added. A hydrogen atmosphere was re-established and the hydrolysis was allowed to proceed overnight. The solution was diluted with water (20 ml) and filtered. The pH of the filtrate was adjusted to 6 with HOAc and heated to provide a solid precipitate. The mixture was cooled and filtered to provide 5-benzyloxytryptophan (2.64 g). [Pg.133]

Tertiary, benzyl, and aHyhc nitro compounds can also be used as Friedel-Crafts alkylating agents eg, reaction of (CH2)3CN02 (2-nitro-2-methyl propane [594-70-7]) with anisole in the presence of SnCl gives 4-/-butylanisole [5396-38-3] (7). SoHd acids, such as perfluorodecanesulfonic acid [335-77-3], and perfluorooctanesulfonic acid [1763-23-1] have been used as catalysts for regio-selective alkylations (8). [Pg.551]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Nitro alcohols react with amines to form nitro amines. Such a reaction can be carried out with a wide variety of primary and secondary amines, both ahphatic and aromatic a basic catalyst is requited if aromatic amines are involved. The products of reactions between dihydric nitro alcohols and amines are nitrodiamines, many of which are good fungicides (qv). Dihydric nitro alcohols, primary amines, and formaldehyde react to yield nitrohexahydropyrimidines (4). Nitrohexahydropyrimidines can be reduced to the corresponding amines, some of which are good fungicides or bactericides, eg, hexetidine [141-94-6] (5-amino-l,3—bis(2-ethylhexyl)-5-methylhexahydropyrimidine). [Pg.61]

The nitro alcohols available in commercial quantities are manufactured by the condensation of nitroparaffins with formaldehyde [50-00-0]. These condensations are equiUbrium reactions, and potential exists for the formation of polymeric materials. Therefore, reaction conditions, eg, reaction time, temperature, mole ratio of the reactants, catalyst level, and catalyst removal, must be carefully controlled in order to obtain the desired nitro alcohol in good yield (6). Paraformaldehyde can be used in place of aqueous formaldehyde. A wide variety of basic catalysts, including amines, quaternary ammonium hydroxides, and inorganic hydroxides and carbonates, can be used. After completion of the reaction, the reaction mixture must be made acidic, either by addition of mineral acid or by removal of base by an ion-exchange resin in order to prevent reversal of the reaction during the isolation of the nitro alcohol (see Ion exchange). [Pg.61]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

Most nitroparaffins do not react with ketones, but ia the presence of alkoxide catalysts, nitromethane and lower aUphatic ketones give nitro alcohols ia the presence of amine catalysts dinitro compounds are obtained. [Pg.100]

The reduction of nitro alcohols to alkanolamines is readily accompHshed by hydrogenation in the presence of Raney nickel catalyst (1,9,10). [Pg.18]

The use of fixed bed catalysts is described in several patents (33—37). Methods of operation include upflow, trickle bed, and even vapor phase. Typically, a large volume of solvent is used to moderate the temperature rise associated with the high heat of reaction for nitro group reduction. [Pg.238]

In catalytic hydrogenation, a compound is reduced with molecular hydrogen in the presence of a catalyst. This reaction has found appHcations in many areas of chemistry including the preparation of amines. Nitro, nitroso, hydroxylamino, azoxy, azo, and hydrazo compounds can all be reduced to amines by catalytic hydrogenation under the right conditions. Nitriles, amides, thioamides, and oximes can also be hydrogenated to give amines (1). Some examples of these reactions foUow ... [Pg.257]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

Mixing. Because of the heterogeneous nature of this system, efficient mixing is essential to ensure the intimate contact of the iron, nitro compound, and water soluble catalyst. An agitator which allows the iron to settie to the bottom and the other materials to separate into layers does not function efficientiy. On the other hand, a reaction whose rate is limited by the quaUty of the iron will not be significantly improved by better mixing. [Pg.262]

The N,]S -dialkyl-/)-PDAs are manufactured by reductively alkylating -PDA with ketones. Alternatively, these compounds can be prepared from the ketone and -lutroaruline with catalytic hydrogenation. The /V-alkyl-/V-aryl- -PDAs are made by reductively alkylating -nitro-, -nitroso-, or /)-aminodipheny1 amine with ketones. The AijAT-dialkyl- PDAs are made by condensing various anilines with hydroquinone in the presence of an acid catalyst (see Amines-aromatic,phenylenediamines). [Pg.238]

Reduction of Aromatic Mitro Compounds to Aromatic Amines. Mild conditions and a large variety of catalysts effect reduction of aromatic nitro compounds to aromatic amines (see Amines byreduction). [Pg.200]

Nitropyridazines are reduced catalytically either over platinum, Raney nickel or palladium-charcoal catalyst. When an N-oxide function is present, palladium-charcoal in neutral solution is used in order to obtain the corresponding amino N-oxide. On the other hand, when hydrogenation is carried out in aqueous or alcoholic hydrochloric acid and palladium-charcoal or Raney nickel are used for the reduction of the nitro group, deoxygenation of the N- oxide takes place simultaneously. Halonitropyridazines and their N- oxides are reduced, dehalogenated and deoxygenated to aminopyridazines or to aminopyridazine N- oxides under analogous conditions. [Pg.34]


See other pages where Nitro catalysts is mentioned: [Pg.116]    [Pg.114]    [Pg.118]    [Pg.116]    [Pg.114]    [Pg.118]    [Pg.28]    [Pg.492]    [Pg.628]    [Pg.140]    [Pg.23]    [Pg.7]    [Pg.507]    [Pg.302]    [Pg.335]    [Pg.277]    [Pg.448]    [Pg.492]    [Pg.14]    [Pg.70]    [Pg.100]    [Pg.100]    [Pg.258]    [Pg.259]    [Pg.260]    [Pg.263]    [Pg.76]    [Pg.25]    [Pg.89]    [Pg.92]    [Pg.130]   
See also in sourсe #XX -- [ Pg.627 ]




SEARCH



Alkenes palladium-nitro complex catalysts

Nitro Michael reaction catalysts

Nitro catalyst deactivation

Nitro compounds catalysts, palladium complexes

Nitro compounds catalysts, rhodium complexes

Nitro ligands metal complex catalysts

Nitro oxidation catalysts

Propene cobalt-nitro complex catalysts

© 2024 chempedia.info