Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles spectroscopy

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Most rubbers used in adhesives are not resistant to oxidation. Because the degree of unsaturation present in the polymer backbone of natural rubber, styrene-butadiene rubber, nitrile rubber and polychloroprene rubber, they can easily react with oxygen. Butyl rubber, however, possesses small degree of unsaturation and is quite resistant to oxidation. The effects of oxidation in rubber base adhesives after some years of service life can be assessed using FTIR spectroscopy. The ratio of the intensities of the absorption bands at 1740 cm" (carbonyl group) and at 2900 cm" (carbon-hydrogen bonds) significantly increases when the elastomer has been oxidized [50]. [Pg.640]

When 5-ten-butyl-2,2,2-tnmethoxy-3,3 bis(tnfluoromethyl) 2,3 dihydro-1,4,2-oxazaphosphole is pyrolyzed at 700-860 °C and the cycloreversion products are condensed at -196 C, the nitrile ylide formed can be identified by infrared spectroscopy (equation 39) [777]... [Pg.861]

Characterization and understanding of the microstructure become important after hydrogenation and hydroformylation of the nitrile rubber since the amount and distribution of the residual double bonds influence the properties of modified rubber. The conventional analytical tools have been used to characterize the elastomers. Spectroscopy is the most useful technique for determination of the degree of hydrogenation in nitrile rubber. [Pg.568]

Nitriles show an intense and easily recognizable C=N bond absorption near 2250 cm-1 for saturated compounds and 2230 cm-1 for aromatic and conjugated molecules. Since few other functional groups absorb in this region, IR spectroscopy is highly diagnostic for nitriles. [Pg.771]

Carboxylic acid groups can be detected by both and A3C NMR spectroscopy. Carboxyl carbon atoms absorb in the range 165 to 185 8 in the l3C NMR spectrum, with aromatic and unsaturated acids near the upheld end of the range (—165 8) and saturated aliphatic acids near the downfield end (—185 8). Nitrile carbons absorb in the range 115 to 130 8. [Pg.771]

Spectroscopy of Carboxylic Acids and Nitriles 770 Focus On. .. Vitamin C 772... [Pg.1330]

A mechanistic proposal, which is based on the mthenium-catalyzed dehydration reaction reported by Nagashima and coworkers [146], is shown in Scheme 44. Reaction of a primary amine with hydrosilane in the presence of the iron catalyst affords the bis(silyl)amine a and 2 equiv. of H2. Subsequently, the isomerization of a gives the A,0-bis(silyl)imidate b and then elimination of the disiloxane from b produces the corresponding nitrile. Although the disiloxane and its monohydrolysis product were observed by and Si NMR spectroscopy and by GC-Mass-analysis, intermediates a and b were not detected. [Pg.59]

The compounds benzonitrile, p-methylbenzonitrile, /)-methoxybenzonitrile, p-trifluoromethyl-benzonitrile, /)-methoxycarbonylbenzonitrile, and triethoxysilane are commercial products and are degassed and stored under argon before use. Trimethylsilane was prepared according to a literature report [38]. The nitrile (9.8 mmol) and the hydrosilane (49 mmol) are added to the rhodium catalyst (0.1 mmol) contained in a Carius tube. When using trimethylsilane, the operation is performed at —20°C. The tube is closed and the mixture stirred at 100 °C for 15h. The liquid is separated by filtration and the excess of hydrosilane removed under vacuum to leave the N, Wdisilylamine derivative. If necessary, a bulb to bulb distillation is performed to obtain a completely colorless liquid. The yields obtained in the different runs are reported in Table 6. The product have been characterized by elemental analysis, NMR spectroscopy, and GC-MS analysis. [Pg.450]

Infrared spectroscopy is a major tool for polymer and rubber identification [11,12]. Infrared analysis usually suffices for identification of the plastic material provided absence of complications by interferences from heavy loadings of additives, such as pigments or fillers. As additives can impede the unambiguous assignment of a plastic, it is frequently necessary to separate the plastic from the additives. For example, heavily plasticised PVC may contain up to 60% of a plasticiser, which needs to be removed prior to attempted identification of the polymer. Also an ester plasticiser contained in a nitrile rubber may obscure identification of the polymer. Because typical rubber compounds only contain some 50% polymer direct FUR analysis rarely provides a definitive answer. It is usually necessary first... [Pg.31]

The structures of the 4 isomeric nitriles listed in the above reaction scheme were determined by NMR spectroscopy and dipole moment measurements7b). [Pg.8]

A new approach to the synthesis of 2,4,5-trisubstituted and 2,5-disubstituted oxazoles, 97 and 98, used l-(methylthio)acetone 95 with nitriles in the presence of trifluoromethanesulfonic anhydride. The proposed mechanism involves an unstable 1-(methylthio)-2-oxopropyl triflate 96 which was detected using NMR spectroscopy <06JOC3026>. [Pg.299]

Fullerenes Cycloaddition reactions are very popular for functionalization of fullerenes. Such reactions of fullerenes are compiled and discussed in detail in Reference 253. During the last 10 to 15 years, several communications appeared concerning [3 + 2] cycloaddition of nitrile oxides to fullerene C60- Nitrile oxides, generated in the presence of C60, form products of 1,3-cycloaddition, fullerene isoxazolines, for example, 89. The products were isolated by gel permeation chromatography and appear by and 13 C NMR spectroscopy to be single isomers. Yields of purified products are ca 30%. On the basis of 13C NMR, structures with Cs symmetry are proposed. These products result from addition of the nitrile oxide across a 6,6 ring fusion (254). [Pg.36]

Similarly, other cycloadducts of nitrile oxides with C6o were synthesized. The cycloadducts were characterized by 13C NMR spectroscopy and high-resolution fast atom bombardment (FAB) mass spectrometry. It should be mentioned that X-ray structure determination of the 3-(9-anthryl)-4,5-dihydroisoxazole derivative of C6o, with CS2 included in the crystals, was achieved at 173 K (255). Cycloaddition of fullerene C60 with the stable 2-(phenylsulfonyl)benzonitrile oxide was also studied (256). Fullerene formed with 2-PhSC>2C6H4CNO 1 1 and 1 2 adducts. The IR, NMR, and mass spectra of the adducts were examined. Di(isopropoxy)phosphorylformonitrile oxide gives mono- and diadducts with C60 (257). Structures of the adducts were studied using a combination of high performance liquid chromatography (HPLC), semiempirical PM3 calculations, and the dipole moments. [Pg.36]

Benzonitrile oxide, generated by dehydrochlorination of benzohydroximoyl chloride, undergoes regio- and face-selective cycloadditions to 6,8-dioxabicyclo [3.2.1]oct-3-ene 108a yielding a 4 1 mixture of 4,5-dihydroisoxazoles 109 and 110. Both products have exo-stereochemistry, resulting from the approach of the nitrile oxide from the face opposite to the the methyleneoxy bridge. Structures of the adducts were determined by 1 H NMR spectroscopy and, in the case of compound 109, by X-ray diffraction analysis (275). [Pg.41]

Properties of FeCr,o solid samples have been studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and magnetic measurements to stimulate the interaction of Fe with fullerene. FeCr,o samples have been prepared by decomposition of the 1,3-dipolar cycloadduct of the fullerene and ferrocene nitrile oxide. The components exhibit super paramagnetic properties originating from an interaction between FeCr,o complexes within the nano-particles. Each nano-particle consists of hundreds to thousands complexes (546). [Pg.108]

Infrared spectroscopy is an excellent tool in iminoborane chemistry, which readily permits, to distinguish between iminoboranes and nitrile-borane adducts and to identify monomeric and dimeric forms of iminoboranes. This event is due to the fact that the i>CN of CN multiple bonds absorbs outside the fingerprint region and can be considered to be a valuable group frequency even when mixed with other vibrational modes. In some cases other vibrations like NH, BH, B-halogen or B-S stretching modes are helpful for determining the structure of iminoboranes. [Pg.60]

Imanaka—heterogenization of Rh complexes. In 1991, Imanaka and coworkers124 reported the heterogenization of Rh complexes by binding them to aminated polymers. As discussed previously, these findings led to fruitful research by Ford, Pardey, and others. The isolated polymer-bound Rh carbonyl anion complex was found to be reusable for reactions such as water-gas shift and reduction of nitro compounds. The polymer-bound Rh complexes were characterized by infrared spectroscopy. Water-gas shift activity (80 mol H2 per mol Rh6(CO)i6 in 24 hours) was recorded using the Rh complexes at 100 °C with 0.92 atm of CO, 2.16 ml H20, 0.05 mmol Rh6(CO)16, aminated polystyrene, 5.0 mmol of N, 5.56 ml ethoxyethanol and reduction of nitro-compounds (e.g., aliphatic nitro compounds to nitriles, oximes to nitriles, hydroxylamines to nitriles, and N-oxides to amines) occurred at 40 °C. [Pg.170]

IR spectroscopy is used on a routine basis to follow the hydrogenation of DAB-dendr-(CN)a. It is a useful technique for the detection of functional groups, e.g. nitrile absorptions at 2247 cuT1 or the characteristic double peaks due to NH2 groups at 3356 and 2280 cm-1. The IR spectra of the various generations with identical end groups are very similar. [Pg.609]

Thermolysis (550-650°C/10 4-I0 Torr) of /m-butylaminomethylene-malonate (1707) gave a tautomeric equilibrium of (Z/ >3-hydroxypropene-nitrile and cyanoatetaldehyde (see Scheme 59). The products of thermolysis of 1707 were investigated by 1R spectroscopy at 77° K using a special apparatus. [Pg.347]

CO oxidation, 38 236 differential heat of adsorption, 38 217 Biphasic systems, catalysis see Multiphase homogeneous catalysis BiPMo catalysts, 34 39 in formamide to nitrile reaction, 34 39 Bi-postdosing thermal desorption spectroscopy cyclohexene, 42 240... [Pg.54]


See other pages where Nitriles spectroscopy is mentioned: [Pg.272]    [Pg.304]    [Pg.904]    [Pg.770]    [Pg.771]    [Pg.1285]    [Pg.1285]    [Pg.104]    [Pg.184]    [Pg.210]    [Pg.1416]    [Pg.389]    [Pg.119]    [Pg.181]    [Pg.412]    [Pg.615]    [Pg.251]    [Pg.140]    [Pg.2]    [Pg.9]    [Pg.42]    [Pg.229]    [Pg.397]    [Pg.212]    [Pg.614]    [Pg.760]   


SEARCH



Infrared spectroscopy nitrile rubber

Infrared spectroscopy nitriles

Nitrile IR spectroscopy

Nitrile NMR spectroscopy

Nuclear magnetic resonance spectroscopy nitriles

Photoelectron spectroscopy of nitriles

Spectroscopy of Carboxylic Acid Derivatives and Nitriles

Spectroscopy of Carboxylic Acids and Nitriles

© 2024 chempedia.info